
The Origins of Congestion and
Network-Assisted End-to-End Congestion Control

Til Mohr
RWTH Aachen University

Abstract—This article gives an introduction to the most com-
mon origins of network congestion. Congestion lies in different
types of delay, buffer sizes, and their queue-management. While
there are multiple approaches to minimize congestion, this paper
will present and compare different types of algorithms used
in transport protocols. TCP will be used to describe conges-
tion avoidance, by first explaining how the protocol perceives
congestion and later on how it adjusts to the current state of
congestion. To compare to this approach, this paper will also
take a closer look at network-assisted congestion control and a
real-use implementation in data centers.

I. INTRODUCTION

Congestion was, is, and always will be a problem on the
Internet, appearing in various forms with different symptoms
causing minor but also major challenges. Most data sent over
the internet is split up in smaller packets that all try to
reach their destination the fastest, whether it is by taking the
shortest or the least congested route. In an optimal network all
computers, servers, etc. would have a direct link to each other,
thus reducing the importance of bandwidth and consequently
removing the need for buffers at all. However, the larger the
network grows, the number of links would increase quadrati-
cally.
Networks today consist of network nodes (routers, switches,
...) which all try to route internet packets as quickly as possible
whilst keeping the required hardware to a minimum. Ideally,
there would be a steady flow of packets being transmitted at
the maximum rate. However, when an internet node receives a
packet while the outgoing connection still is in use, the packet
has to be stored in a buffer until the outgoing connection freed
up again. Therefore, those storage units are essential to every
node on a network but without proper management, even well-
sized buffers could lead to network problems like packet loss,
jitter, and connection delay [1].
This paper will present the origins of network congestion
[section II] and analyze how TCP’s congestion avoidance
[section III] protocols and network-assisted congestion control
[section IV] try to avoid and minimize congestion.

II. ORIGINS OF CONGESTION

With the ever-growing amount of internet services not only
data centers but the whole internet in general faces new
challenges with each packet sent. Buffers are crucial storages
inside network nodes. Their purpose is to store incoming
packets while the outgoing connection is still in use. If a buffer
however starts to fill up, other buffers in the same network will
experience the same, thus creating congestion.

1 2

n-1 n

bandwidth1

bandwidthn−1

Fig. 1. Path a packet takes through the network. Each circle represents a
network node with 1 being the sender and n being the receiver.

Therefore, a network-wide reduction of those complications is
an important task to improve the quality of all internet services.
While delay can cause congestion by filling up buffers, buffers
itself are also an origin of congestion.

A. Delay

Network delay can generally speaking be categorized into
four different types of delay [2]:

• Transmission delay is the time it takes to send a packet
from one node to another. More specifically, it describes
the delay of transmitting data packets between two in-
ternet nodes depending on bandwidth and length of the
connection. Typically, packets sent from an origin to a
destination node are sent over various internet nodes, all
of which could have a different bandwidth. Therefore,
a packet send from node 1 to node n over nodes
2 to n-1 cannot be received at a faster rate than the
lowest bandwidth on the path of the packet (bottleneck)
[Figure 1].

Ratemax ← min{bandwidthi | i ∈ {1, ..., n− 1}}

• The delay known as Inter-Packet delay describes the
gap each node intentionally creates between two packets
being sent. This pause is often necessary to allow the
receiver to prepare for the arrival of a new packet,
however, depending on the transmission protocol, other
purposes may also apply.

• Processing delay is the time needed to process an indi-
vidual packet by an internet node. This usually means
processing the packets IP header, finding its destination,
and possibly queuing it in buffers.

• Queuing delay is the time a packet spends waiting to be
processed or transmitted.



It is important to understand that delay has a direct impact
on congestion. When delay increases, the throughput of the
network can decrease as packets will stay inside the network
for a longer time. However, if the network continues to
receive new packets at a constant rate, more and more packets
will have to be stored, resulting in congestion. Generally
speaking, to tackle congestion, firstly delay can be reduced,
and secondly, the storages inside the network, the buffers,
can be improved regarding efficient queue management and
buffer size. Finally, transmission protocols can also react to
congestion and adapt their send and data rate to recover
from congestion [section III] and even control congestion
[section IV].
Whereas processing delay is almost not noticeable and trans-
mission and inter-packet delay could be improved by upgrad-
ing cables, hardware, or transmission protocols, queuing delay
has various causes and therefore is the most difficult one to
reduce. There are many different ways to implement buffers in
a network node and the effectiveness of each implementation
varies from where it is used. Traffic in residential network
nodes, for example, differs from nodes used in large data
centers in every aspect, thus hardware and software in those
components should be adjusted accordingly.

B. Buffers

Sizing buffers is a complex task. On the one hand, read
and write times should be as short as possible to minimize
additional delay. On the other hand, buffers should not be too
small, as networks need to be robust for future changes and
bursts and therefore nodes should store lots of data if needed
while also keeping in mind the requirements of congestion
detection algorithms as described in section III to adjust for
congestion appropriately [3]. Unifying those goals is very
challenging as it leads to increasing costs and physical space
occupied by those buffers. Additionally, a 2004 paper by
Appenzeller et al. [1] found that 99% of buffers in network
nodes, which were sized on a rule-of-thumb rule based on the
TCP protocol [4], could be removed without losing but rather
gaining performance. Balancing speed and size is difficult
and thus buffer sizes should be adjusted to their area of use
accordingly.
This isn’t the only major cause of queuing delay. Without
proper buffer management, even nodes with well-sized buffers
will experience performance loss. Proper queue management
is able to compensate for the unpredictable fluidity of network
traffic. It is a difficult task to buffer the right amount of
packets to keep transmission flow consistent over time. As the
number of packets being transmitted grows, the throughput of
the network node increases until packets are being transmitted
at the bottleneck rate. After this, the transmission rate cannot
increase anymore, which leads to packets being buffered along
their path to prevent them from being lost [2]. If the incoming
amount of traffic keeps exceeding the amount of outgoing
traffic, those buffers will fill up (over-buffering), which will
eventually lead to bufferbloat [5], [6].

Source Port Destination Port

Sequence Number

Acknowledgment Number

Data
Offset Rsrvd

C
W
R

E
C
E

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Window Size

Checksum Urgent Pointer

Options

Data

Fig. 2. Basic structure of the TCP header. It is split up into multiple 32-bit
blocks. The data block contains all the application data to be transmitted [8],
[9], [10].

Bufferbloat: Bufferbloat refers to frequently full and ex-
cessively large buffers in internet nodes. This leads to partly
unnecessary network delay and damages congestion avoidance
algorithms, such as those found in classic TCP, which will be
explained in section III [2], [7]. Buffering is needed to provide
space to queued packets waiting for transmission resulting in a
minimization of packet loss. In the past, however, buffer sizes
were smaller than today’s thus less packets could be queued
and more were dropped, signaling transmission protocols the
presence of congestion in this node early in. With memory
getting cheaper over the years, buffers saw an increase in size.
This has the negative impact, that more packets can be queued
before any are dropped, thus those adjustments of congestion
avoidance protocols kick in later than usual. Therefore, buffers
are being filled in the whole network which results in an
extreme increase in network delay (latency) and fluctuation
(jitter) [2], [3], [7].
So Services, which require low latency at a high data-rate,
such as streaming, will experience a decrease in quality.

III. CONGESTION AVOIDANCE

As already mentioned, congestion detection algorithms
make up an important part of congestion avoidance protocols.
TCP is such a protocol, based on the transport layer, which
adapts its send rate according to available network band-
width [11], [8]. To fully understand, how TCP’s congestion
avoidance algorithm operates, one needs to understand how
TCP works. In the following, TCP’s congestion avoidance
algorithm will be explained using the TCP Specification [9],
[12], also being referred to as classic TCP. Note, there are also
other TCP implementations improving upon it. The underlying
concept however is the same.
TCP lives on the transport layer. It communicates with the
application layer via sockets, splits up data into packets (and
vice versa), and transmits those packets over the network with
the help of the internet protocol, thus TCP is often also referred



to as TCP/IP. It is the interface between network components
and computer programs. Each of those packets have different
purposes but underlay the same structure - the protocol header.
The TCP header is split up into multiple segments [Figure 2]:

• Source Port and Destination Port specify the ports on
which TCP should communicate with the application
layer.

• The Sequence Numbers and Acknowledgment Numbers
specify how much data has been sent so far. All bytes
in a TCP connection are numbered in increasing order,
with both sides of the connection keeping track of those
numbers. This way packet loss can be detected. As the
sequence numbers are limited to 32 bit, they cannot
increase endlessly. Thus, if all possible sequence numbers
are used up, it wraps around to 0 to keep the connection
up and running [12].

• TCP can set eight different bit-flags in its header. The
most important one is the ACK flag (Acknowledgement
bit). Whenever a data packet arrives at its destination,
a packet acknowledging the arrival of this packet will
be sent back. This acknowledgment packet always has
the ACK flag set. The SYN and FIN flags initialize and
terminate a connection.

• The Window Size is the maximum amount of data (in
bytes) a receiver is willing to receive at any time. It is
important to set it appropriately to prevent unnecessary
packet loss or delay, as the receiver couldn’t process the
data in time. Thus, it is will also be constantly adjusted
to improve the reliability of the connection [8].

TCP uses a handshake system. Whenever a client sends
a data packet to the server, the server waits until it has
received enough data (specified by the window size), and
then sends back an acknowledgment packet, signaling the
successful transmission of data. There are also other handshake
operations used, for example, for establishing or terminating a
connection, however, those have no further importance to the
congestion avoidance protocol [11], [8], [10], [13].

A. Perceiving Congestion

Both partners of a connection are both sender and receiver,
as both transmit packets. In the following, however, one
partner will be specified as the sender, the other as the receiver.
The sender keeps track of the time it takes from when a
packet sent until the acknowledgment is received. This is also
known as round-trip time (RTT). Comparing the current RTT
to previously measured RTTs can inform the sender about
the current state of congestion. Some variances of TCP make
use of this feature in their congestion avoidance algorithms,
yet classic TCP does not [10], [13]. RTT also plays a very
important role in the detection of packet loss, which further
implies congestion. The sender side keeps track of the RTT
while it is being measured and compares it to the retrans-
mission timeout (RTO) [8]. RTO time is being calculated
by estimating the mean and variance of the RTT. Whenever
packets are not acknowledged within this RTO interval, the
TCP sender regards this packet as lost and will retransmit

Transmission round

C
on

ge
st

io
n

w
in

do
w

si
ze

Fig. 3. TCP congestion avoidance protocols. Yellow represents the slow-start
sequence, red and green symbolize detected congestion. The data provided is
symbolic.

its data. Therefore, it is essential to TCP performance, that
the RTO is being determined accurately, as a too low RTO
could prompt unnecessary retransmissions and too high RTO
could slow down the application TCP is serving [10], [13].
To implicitly notify TCP that congestion occurs, congested
network nodes will occasionally drop packets after a certain
threshold of queued packets has been exceeded. Usually, this
is quite smaller than the maximum queue length, therefore
avoiding actions can be taken in time [14].

B. Adjusting for Congestion

To prevent congestion altogether, packet flow inside a net-
work would have to be conservative. A connection in this state
is also being described as being in equilibrium [8]. Simply
speaking this means, the network works at full load whilst no
additional delay or congestion is being created. However, it is
quite challenging to keep a full network in this state forever.
The goal of TCP’s congestion avoidance algorithms, which
are based on an Additive-Increase Multiplicative-Decrease
(AIMD) principle, is to react to the current state of congestion
and achieve equilibrium. Those algorithms can be categorized
into three sub-algorithms, that all have the goal to keep the
connection in equilibrium, no matter how congestion was
perceived. Here, a variable called congestion window (cwnd)
has an important role. It describes the maximum amount of
data sent during an average RTT. An additional mechanism of
keeping a connection in equilibrium is, that each acknowledg-
ment packet received by the sender opens the space for a new
packet to be sent into the network [8].

Slow-Start: The slow-start algorithm is used when a con-
nection has just been established or when multiple packet
losses were detected. The cwnd variable is set to one packet
per estimated RTT because no information about network con-
gestion has been collected yet. Whenever an acknowledgment
packet is being received, cwnd will increase by one packet.
This doubles cwnd each RTT, resulting in an exponential
growth over time, which helps to get the packet send rate to the



Congested Signal

Packet Congested Node Marked Packet

Fig. 4. Congestion Control Algorithm. A congested node marks buffered packets to describe congestion. This signal will be sent back to the original sender.

maximum the network can handle quite quickly, contributing
to almost immediately maximum network performance [8].

Adaption: When the network is congested, buffers in net-
work nodes will fill up exponentially [8]. Therefore, the
network can only stabilize if the number of packets sent
decreases at least as quickly as the queues are growing. The
formula [8]

cwndi+1 ← d · cwndi, 0 < d < 1

has an exponential decrease over time, thus resulting in the
network recovering.
If the network isn’t congested, the sender should try to raise
cwnd slowly to reach the network’s maximum throughput
again. A multiplicative, exponential increase over time, like
the slow-start algorithm isn’t the best choice here. Increasing
the number of packets sent drastically while cwnd still is
high can challenge the network’s capacity, resulting in heavy
congestion. Therefore, the best option to raise cwnd to its
limits is an additive increase [8]:

cwndi+1 ← cwndi + u

Van Jacobson proposes in his 1992 paper about TCP conges-
tion avoidance that d will be set to 1

2 and u will be set to
1

cwndi
. Thus, cwnd can only increase by a maximum of one

packet per RTT leading to a smooth approach to the network’s
limit [8].

IV. NETWORK-ASSISTED CONGESTION CONTROL

The problem that comes with classic TCP is that the
congestion detection algorithms are very implicit. Packet loss,
for example, may have different causes other than network
congestion, such as simple cable interference, however, the
congestion avoidance algorithm will still interpret it as con-
gestion, thus possibly resulting in unnecessary network delay.
Therefore, exactly determining whether the network is con-
gested or not is crucial to keep a network stable. Here, the
network layer comes into play. Because most communication
should be hidden along the path of the packet, all network
nodes will only communicate on the network layer (where IP
lives) but not above (where TCP lives) [14].
In 2001 a new method was standardized to explicitly notify
TCP on congestion. Explicit Congestion Notification (ECN) is

an extension to TCP and IP, allowing end-to-end congestion
notification while also minimizing the number of packets
dropped. This is done by modifying the IP header to be able
to carry one more bit - the Congestion Experienced flag (CE)
[14]. Instead of dropping packets occasionally after the number
of queued packets exceeds a threshold [subsection III-A], all
packets supporting ECN will now be marked (setting the
CE bit in the IP header) [Figure 4]. Thus, congestion can
be described explicitly resulting in better short- and long-
term network performance. Finally, if a data packet has been
marked, the according acknowledgment packet will also be
marked to inform the sender of congestion [14], [15], [16].
To sum up so far, without ECN, classic TCP would just drive
the network into congestion, and then recover from it. The
network generally speaking will at least experience some jitter
(fluctuating network delay). With ECN however, packets in
congested nodes will be marked, explicitly informing the TCP
sender that the network is congested. As a result, avoiding
actions can be taken immediately. Also, the need to retransmit
packets would decrease drastically, as no packets are being
dropped anymore to indicate congestion. Therefore, this cen-
tral principle is also being called Congestion Control [14],
[15].

A. XCP

Although TCP is a very dominant protocol on the internet,
also other transport protocols could benefit from end-to-end
congestion notification. The paper ”Congestion Control for
High Bandwidth-Delay Product Networks” generalizes the
ECN proposal of 2001, creating a new protocol called eXplicit
Congestion Protocol (XCP) while also improving upon it
further by introducing new packet control concepts [17], [18].
A major addition to this congestion control protocol is a
feedback variable in the protocols header, which represents the
amount of congestion in the network and is being computed
along the data packets path.

XCP Header: Like TCP, XCP is a window-based conges-
tion control protocol intended for the best effort. Underneath
the hood however, they are very different. A major difference
between both protocols is that XCP does not only inform
the sender on congestion but does also provide information
about the degree of congestion. XCP can achieve this by



including a congestion header to each packet. While the sender
maintains a cwnd and RTT variable, as with TCP, those are
also being communicated to network nodes via the congestion
header as H cwnd and H rtt. Additionally, the congestion
header includes one more field. This H feedback field is also
initialized by the sender but is the only field that can be
modified by nodes along the path [17], [18].

XCP Sender: As with TCP, the XCP sender maintains
a congestion window, cwnd, and an estimate of the round
trip time, RTT. On packet departure, the H cwnd and H rtt
fields will be initialized with cwnd and RTT accordingly. The
initialization value of the H feedback field represents a desired
send rate r:

H feedback ← r ·RTT − cwnd

cwnd

This is an improvement to TCP’s adjustment algorithms as the
desired rate can be reached after one RTT.
The other task an XCP sender has is to adjust the congestion
window according to the network’s feedback. When s is the
packet size, the congestion window variable would be adjusted
by the following formula:

cwnd← max(cwnd+H feedback, s)

In addition to responding to direct feedback, the XCP sender
still needs to handle packet loss, though this is very similar to
what TCP does [17].

XCP Receiver: The XCP receiver functions the same way
as a TCP receiver would except for copying the (modified)
congestion header from the data packet to its acknowledgment
[17].

XCP Router: The main task of network nodes in XCP, or
XCP routers, is to inform the XCP sender of the current state
of congestion. This is done by computing feedback at every
node. The objective of XCP is to prevent the queues building
up to a point at which packets have to be dropped [17].
Feedback is computed by two controllers. The Efficiency
Controller (EC) tries to maximize link utilization while min-
imizing queue lengths and packet drop rates. When the XCP
routers link is underused, positive feedback should be sent.
If the link is congested however, negative feedback should
be sent to keep queue lengths minimal resulting in no packet
drops [17], [18]. The exact computation of feedback is beyond
the scope of this paper, is however explained into detail in a
paper by Wydrowsky et al. [18].
To achieve efficiency and equilibrium, this feedback will be
allocated to single packets as H feedback. However, the EC
does not decide which packets should carry the feedback.
Hence, the Fairness Controller (FC) comes into play. As TCP,
FC relies on the AIMD principle [subsection III-B]. If the EC
calculated positive feedback, it will be split up between all
packets equally. If the feedback is negative however, it will
be divided between packets in proportion to their current send
rates, which are determined by H cwnd and H rtt [17], [18].
Decoupling the feedback computation allows XCP to quickly
acquire the maximum send rate and achieve equilibrium, all

while the network allocates bandwidth to all XCP senders
equally [17].

B. Evaluation of Network-Assisted Congestion Control

As shown, including the network layer to detect congestion
can have great performance improvements. ’Understanding
XCP: Equilibrium and Fairness’ has shown through simula-
tions that many network topologies could benefit from XCP
as it clears queues in equilibrium, thus resulting in improved
network performance under load [18]. Another paper has
shown that XCP outperforms ordinary TCP in nearly any
environment in aspects of average queue lengths, efficiency,
and throughput [17].
However, all this performance comes at a cost. Since network
nodes have to actively detect congestion, ECN, XCP, and other
network-assisted congestion control protocols rely on active
queue management in those nodes. Although there is some
hardware being produced today that meet ECNs requirements,
a large part of internet hardware isn’t capable of doing so. As
many routers do not run on software but hardware only to
improve performance, they can only handle specific packets.
Whenever they cannot recognize a packet, it will simply be
dropped [17]. So, although ECN packets differ from ordinary
TCP/IP packets by only one bit, not all routers can handle this
change and will drop those packets. This is the reason you do
not see these kinds of protocols in wide area networks (WAN)
too often, let alone the internet.
Nevertheless, whenever the implementation of XCP, ECN, or
similar protocols is not a challenge, can implement network-
assisted congestion control with ease and see great perfor-
mance improvements. Especially smaller networks with high
traffic could benefit from those technologies [subsection IV-C].

C. DCTCP

A lot of internet services run in data centers with large
amounts of computers communicating with each other, result-
ing in a lot of traffic inside the data center. Optimizing those
data centers networking capabilities can increase application
productivity. In 2010 a paper proposed DCTCP, a variation
of TCP using ECN to create a data transportation protocol,
which especially takes hardware purposed for use in those
environments into account [19].
The general problem that appears in high-traffic environments
is the so-called TCP Incast problem. It describes a drastic
reduction in application throughput. To understand where
TCP incast originates, one fist needs to understand how
most data centers are built. A typical data center contains
a set of racks, each holding a large number of servers, the
switches, that connect those racks, and connecting links, that
connect those switches to other parts of the data center or
the internet [Figure 5]. This design pattern is also known
as Partition/Aggregate and is most commonly used in data
centers. It however results in a high ’fan-in’, as multiple
servers (leaves) are connected to just one link (root) [19], [20].
Additionally, most applications require high bandwidth, low
latency connections, also enabling them to send many parallel



Outgoing
Connection

Server Server Server

High
’Fan-In’

Fig. 5. Data Center High ’Fan-In’

requests to other servers. Combining those requirements with
the design pattern, it becomes clear, that those switches are
being challenged. Besides, many data center switches have
relatively small, shared buffers. Therefore, it is common that
many packets are being transmitted at the same time (bursty
retransmissions), resulting in a collapse of throughput [19],
[20].
The goal of DCTCP is to keep data center traffic constantly
flowing, which means meeting the requirements applications
take while keeping relatively small buffer sizes inside switches
in mind. To achieve this, DCTCP implements ECN. Unlike
TCP however, if a DCTCP sender registers congestion, the
window size will be reduced by a fraction of the number of
marked packets it received. Therefore, excessive link under-
utilization can be prevented. In addition, the DCTCP receiver
will only send one ACK packet for every m consecutive
data packet, where all 1, ...,m packets before had the same
CE-flag configuration. Here, m is a variable initialized while
the DCTCP connection is being established and cannot be
changed without renegotiation. Therefore, fewer packets are
sent through the network but the TCP sender is still able to
identify lost packets and register congestion [19].
However, being a bandwidth greedy transmission protocol,
data centers using DCTCP can see a performance drop when
they additionally use other transmission protocols such as TCP
or ECN. As DCTCP tries to utilize the links as much as
possible, non-greedy protocols will be neglected and will see
a drop in performance. Thus, data centers should avoid using
DCTCP in addition to other protocols to fully make use of
DCTCP’s capabilities.
To sum up, being able to react to congestion immediately
enables DCTCP to reduce buffer overflows and timeouts,
thus largely resolving incast problems. The paper proposing
DCTCP has found, that their protocol increases traffic by
110% while using 90% less buffer space compared to TCP
[19]. Therefore it is unsurprising that DCTCP is very popular
in data centers.

V. CONCLUSION

This paper has analyzed the origins of congestion. Dif-
ferent factors play a role in network congestion, however,
especially full buffers at congested nodes will cause traffic
delay. Further, we assess the functionality of congestion avoid-
ance algorithms, especially classic TCP. However, since those

algorithms quite often do cause network stress rather than
resolving it, we took a closer look at network-assisted end-
to-end congestion control. ECN, an addition to TCP, and XCP
are two standardized protocols applying those principles but
haven’t been very successful in wide area networks (WAN).
In smaller networks, the implementation of them is easier.
DCTCP, a variation of ECN, as an example, can successfully
resolve many issues occurring in data centers.

REFERENCES

[1] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing router buffers,”
ACM SIGCOMM Computer Communication Review, vol. 34, no. 4, pp.
281–292, 2004.

[2] J. Gettys and K. Nichols, “Bufferbloat: dark buffers in the internet,”
Communications of the ACM, vol. 55, no. 1, pp. 57–65, 2012.

[3] C. Staff, “Bufferbloat: What’s wrong with the internet?” Communica-
tions of the ACM, vol. 55, no. 2, pp. 40–47, 2012.

[4] C. Villamizar and C. Song, “High performance TCP in ANSNET,” ACM
SIGCOMM Computer Communication Review, vol. 24, no. 5, pp. 45–60,
1994.

[5] M. Allman, “Comments on Bufferbloat,” Computer Communication
Review, pp. 31–37, 2013.

[6] V. G. Cerf, “Bufferbloat and Other Internet Challenges,” IEEE Internet
Computing, vol. 18, no. 5, pp. 80–80, 2014.

[7] Y.-C. Chen and D. Towsley, “On bufferbloat and delay analysis of mul-
tipath TCP in wireless networks,” in 2014 IFIP Networking Conference.
IEEE, 2014, pp. 1–9.

[8] V. Jacobson, R. Braden, and D. Borman, “TCP extensions for high
performance,” RFc 1323, May, Tech. Rep., 1992.

[9] W. Eddy, “Transmission Control Protocol Specification,” Tech. Rep.,
2020, work in Progress.

[10] G. Huston, “Tcp performance,” The Internet Protocol Journal, vol. 3,
no. 2, pp. 2–24, 2000.

[11] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang, and M. Gerla, “The impact
of multihop wireless channel on TCP throughput and loss,” in IEEE
INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE
Computer and Communications Societies (IEEE Cat. No.03CH37428),
vol. 3, 2003, pp. 1744–1753.

[12] J. Postel et al., “Transmission control protocol,” 1981.
[13] V. Jacobson, “Congestion avoidance and control,” ACM SIGCOMM

Computer Communication Review, vol. 25, no. 1, pp. 157–187, 1995.
[14] K. Ramakrishnan and S. Floyd, “A proposal to add explicit congestion

notification (ECN) to IP,” RFC 2481, January, Tech. Rep., 1999.
[15] K. Ramakrishnan, S. Floyd, D. Black et al., “The addition of explicit

congestion notification (ECN) to IP,” 2001.
[16] S. Floyd, “TCP and Explicit Congestion Notification,” SIGCOMM

Comput. Commun. Rev., vol. 24, no. 5, p. 8–23, 1994.
[17] D. Katabi, M. Handley, and C. Rohrs, “Congestion control for high

bandwidth-delay product networks,” in Proceedings of the 2002 con-
ference on Applications, technologies, architectures, and protocols for
computer communications, 2002, pp. 89–102.

[18] S. H. Low, L. L. H. Andrew, and B. P. Wydrowski, “Understanding
XCP: equilibrium and fairness,” in Proceedings IEEE 24th Annual
Joint Conference of the IEEE Computer and Communications Societies.,
vol. 2, 2005, pp. 1025–1036.

[19] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data Center TCP (DCTCP),”
SIGCOMM Comput. Commun. Rev., vol. 40, no. 4, p. 63–74, 2010.

[20] Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. D. Joseph, “Under-
standing TCP Incast Throughput Collapse in Datacenter Networks,”
in Proceedings of the 1st ACM Workshop on Research on Enterprise
Networking. Association for Computing Machinery, 2009, p. 73–82.


	Introduction
	Origins of Congestion
	Delay
	Buffers

	Congestion Avoidance
	Perceiving Congestion
	Adjusting for Congestion

	Network-Assisted Congestion Control
	XCP
	Evaluation of Network-Assisted Congestion Control
	DCTCP

	Conclusion
	References

