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The widening processor-memory performance gap and
the increasing complexity of programs necessitate better
data locality optimization methods for efficient compu-
tation. This paper presents a comprehensive overview
of visualization techniques for data movements and ac-
cesses to aid in data locality optimization. It includes
methods of data gathering like dynamic analysis, static
analysis, and simulation, and discusses their usage in var-
ious visualization tools at different granularities. Three
specific tools are detailed, providing unique perspectives
on data movement visualization. The paper further
outlines the standard performance optimization work-
flow and provides an outlook on future enhancements in
data gathering, visualizations, and automated program
optimization.

Keywords: Data Locality, Memory Access Visualization,
Dynamic Analysis, Static Analysis, Simulation, Per-
formance Optimization, High-Performance Computing,
Data Movement

1 Introduction

The pursuit of performance optimization in the field
of high-performance computing (HPC) continues to
push boundaries, with significant emphasis being
placed on mitigating the impact of the increasing
processor-memory speed gap and the rising com-
putational memory requirements. These challenges
are amplified by the escalating complexity of mod-
ern programs, making it increasingly difficult for
experts to form a mental model of a program’s data
movement, let alone domain researchers. These
factors have led to a marked surge in the costs
of data movement and the appearance of severe
performance bottlenecks. While advancements in
hardware can alleviate some of these issues, the
software community must also step up to the chal-
lenge, enhancing data locality through software to
optimize data movement and access.

In this context, this paper focuses on the visual-
ization of data movements and accesses, an often
overlooked yet critical aspect of understanding and
optimizing the complex data behavior of modern
programs. Through a detailed overview of vari-
ous methods of data acquisition, including dynamic
analysis, static analysis, and cache simulation, this
paper aims to shed light on the intricate world
of data movement. By discussing different visual-
izations at varying granularities, it seeks to arm
performance engineers with the necessary tools to
enhance a program’s data locality.

This contribution stands out as it provides a con-
solidated overview of different data visualization
methods, enabling practitioners to select and em-
ploy the most suitable ones based on their specific
needs and the complexity of their programs. This
overview is not limited to any single approach, but
instead offers a comprehensive understanding of the
methods available, highlighting the strengths and
limitations of each.

The rest of the paper is structured as follows: Sec-
tion [2 discusses the prevailing memory-related per-
formance problems and their implications for mod-
ern computing systems. In Section |3 we delve into
the various methods of acquiring memory-related
performance data, with a focus on dynamic analysis,
static analysis, and cache simulation. Section [4] pro-
vides a comprehensive overview of different visual-
ization techniques used to interpret this data, while
Section [5 outlines the standard workflow adopted
by performance engineers to identify and mitigate
memory-related bottlenecks. Section [6] presents
an in-depth examination of exemplary memory ac-
cess visualization tools, highlighting their unique
strengths, weaknesses, and data gathering methods.
Finally, the paper concludes with a discussion on the
outlook for future work and potential improvements
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Figure 1: Illustration of the expanding processor-memory gap. The left graph charts the progression of
FLOPs and MOPs on a logarithmic scale across various computing platforms, with the FLOPs
trendline demonstrating a steeper ascent, indicative of the widening gap. The right figure
depicts the development of the machine balance score for these platformsﬂ

in this vital and rapidly-evolving field.

2 Memory-Related Performance
Problems

As modern computing systems evolve, the demand
for increased computational power and memory re-
sources has become more prevalent. This demand
is driven by the increasing complexity of applica-
tions and the need to process larger amounts of
data. In this section, we will explore the challenges
and performance problems that result from the
ever-growing requirements for memory and com-
putational resources. We begin by discussing the
processor-memory performance gap and its implica-
tions in Section 2.1} followed by a brief examination
of the increasing computational and memory re-
quirements of modern applications (Section .
The processor-memory performance gap and the
increasing computational and memory requirements
combined result in a need to tackle high data trans-
fer costs and bottlenecks (Section . Finally, we
will define the concept of data locality in Section
which solutions to the aforementioned problems
take into consideration.

2.1 Processor-Memory Performance Gap

It is well known, that the performance of CPUs
doubles roughly every two years, a phenomenon

IData was acquired from a collection of STREAM bench-
mark results on https://www.cs.virginia.edu/stream/.

resulting from Moore’s law. Similarly, memory tech-
nology has also been progressing exponentially, how-
ever, at a slower pace . Since the difference
between two exponential functions is also exponen-
tial, this gap will expand rapidly. This concept is
known as the processor-memory performance gap.
Figure |1} illustrates this trend in improvements in
computational and memory performance, measured
by floating point operations and memory operations
per second, respectively.

The increasing processor-memory performance
gap becomes a critical problem when considering
data access times. Take the equation for the average
memory access time:

(1)

Here, p € [0,1) denotes the probability of a cache
hit (Section [2.3). As at least one instruction has
to be fetched from memory, at least one cache miss
per application is guaranteed, thus p < 1. . and ¢,,
denote the times to access data from a cache and
the main memory, respectively [5,[6]. These times
measure the performance of the cache and the main
memory as a combination of memory latency and
bandwidth (Section . To simplify our under-
standing, let’s assume that the CPU clock speed is
constant. Under this assumption, we can interpret
these memory access times as corresponding to a
specific number of clock cycles.

Interestingly, over the past decade, the improve-
ment of CPU clock times has seen a stagnation [7].
This suggests that with the progress in memory tech-
nology, the times required to access a given amount
of data, as represented by t,, and t., are decreasing.

tavg:p'tc+(1_p)'tm
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However, other processing-centric innovations such
as hyperthreading and multicore CPUs [7] continue
to outpace these memory performance gains. As a
result, the overall system performance will be in-
creasingly determined by memory performance. At
some point, CPUs would be able to execute code
faster than we can feed them with instructions and
data. For this reason, the processor-memory per-
formance gap is also known as the memory wall
problem |3}, 5} |6].

To quantify the processor-memory performance
gap, the notion of machine balance has been intro-
duced [4} 8]:

peak FLOP/s
sustained MOP/s

balance = (2)
This metric, also depicted in Figure [1] is a measure
of how well a system is balanced between compu-
tational and memory performance. A balance of
1 indicates a perfectly balanced system, whereas
balance < 1 or balance > 1 indicates a system
that is entirely compute or memory-bound, respec-
tively |4l [8].

2.2 Computation and Memory
Requirements

Different applications have different requirements
for system resources. There exist some programs
that have a larger computational demand, thus ben-
efiting from a higher machine balance [8]. However,
the memory wall problem states that it will be in-
creasingly more difficult for such applications to
exploit further advances in computational perfor-
mance, as for any application the memory perfor-
mance will grow to be the limiting factor [3} |5].
Furthermore, we notice that computational as
well as memory requirements are increasing rapidly.
A prime example of this is the field of artificial in-
telligence systems, which currently sees exponential
growth in the number of parameters used [9]. Hence,
for any application, regardless of its computational
or memory demands, significant strides must be
made in enhancing both the processing and mem-
ory capabilities. This ensures that the constraints
imposed by the memory wall problem do not inhibit
the potential performance of these applications.

2.3 Data Transfer Costs and
Bottlenecks

In this section, we delve into the different elements
that contribute to and potentially mitigate the
processor-memory performance gap. Understanding
these factors can assist in strategizing efficient and
effective solutions to address this pervasive issue.

Memory Latency Memory latency pertains to the
time delay between a request to access data from the
main memory and the start of the execution of this
operation. Increased memory latencies, measured
in clock cycles, lead to the processor waiting longer
for data, significantly tightening the performance
bottleneck. This latency challenge can adversely im-
pact the execution of applications, and its reduction
is often a complex task [2].

Memory Bandwidth Memory bandwidth denotes
the volume of data transfer to or from memory
per unit of time. A bottleneck arises when the
bandwidth is insufficient to handle the required
data transfer volume, causing the processor to wait
for data [2].

Cache Misses To alleviate the impact of mem-
ory latencies, a multi-tiered memory hierarchy has
been implemented in modern computing systems.
This hierarchy includes the use of caches, which
are smaller, faster, and more expensive memory
modules placed between the CPU and main mem-
ory. When the processor needs to access data, it
first checks if the data is already in the cache, a
situation known as a cache hit. However, if the
data is not in the cache, the processor has to re-
trieve it from the slower main memory, a process
known as a cache miss [1}, |2, |6]. When a cache
miss occurs, an entire block of memory known as
a cache line is loaded into the cache. The cache
line includes the requested data and some adjacent
memory locations. However, this process of retriev-
ing data from the main memory takes considerably
more time due to the higher latency of the main
memory. Therefore, cache management, handled by
software, is vital to maintain optimal performance.
Improper management can lead to an increase in
cache misses, thereby significantly degrading the
system’s performance.

2.4 Data Locality

Data locality is a key concept in enhancing memory
performance and therefore reducing the implications
of the processor-memory performance gap. It refers
to the tendency of a processor to access the same set
of memory locations, or closely stored memory loca-
tions, repetitively over a short period. This concept
capitalizes on the multi-level memory hierarchy of
modern computers: By improving data locality, one
reduces the number of cache misses (Section ,
i.e., decreases p in Equation |1} improving overall
system performance |10, |11].

There are two main types of data locality: tempo-
ral and spatial locality. Temporal locality involves



reusing the same data within a relatively small du-
ration. This means that if a memory location is
accessed, it is probable that the same location will
be accessed again soon. Spatial locality, on the
other hand, refers to the use of data items stored
in proximity. In other words, if a memory location
is accessed, memory locations nearby will likely be
accessed shortly [12].

Data layout plays a significant role in the real-
ization of data locality, as it can substantially in-
fluence the memory access patterns and hence, the
underlying performance of a program. A thought-
ful arrangement of data in memory can encourage
both temporal and spatial locality, thus reducing
cache misses and enhancing the overall system per-
formance [12].

To illustrate, consider a two-dimensional array
laid out in memory, where elements in the same
row are stored in consecutive memory locations.
If an application iterates through this array row
by row, it benefits from spatial locality, as loading
one element of the matrix also loads the few next
elements in the row into the cache due to loading
of entire cache lines, thus reducing the number of
cache misses. On the contrary, if the application
were to traverse the array column by column, it
would not benefit from spatial locality due to the
dispersed memory locations of elements in the same
column, leading to a higher rate of cache misses and
reduced performance.

While this example demonstrates a simple sce-
nario, the reality is often more complex, especially
for larger and more intricate applications. Under-
standing the data access patterns of an application
is key to deciding the best data layout, and this of-
ten requires an intimate knowledge of the program’s
structure. Moreover, optimizing data locality can
be quite challenging due to the diversity of hard-
ware architectures. The same program can exhibit
different data locality characteristics on different
hardware due to variations in the memory hierarchy,
such as differences in cache sizes and levels, memory
bandwidth, and latency.

This paper will provide an overview of an ap-
proach to optimize data locality with the help of
visualizations.

3 Data Gathering Approaches

In the pursuit of optimizing a program’s data local-
ity, implementing visual aids to represent data move-
ments and data layouts can be particularly helpful.
This approach enables quick and effective identifi-
cation of data-related issues, their comprehension,
and ultimately, their resolution. This method em-

powers not only program optimization experts but
also domain researchers to effortlessly optimize their
programs.

To enable such effective visualization, however,
it is essential to first collect information regarding
data locality. Several studies have explored this
area, leading to the identification of three primary
strategies: dynamic analysis, static analysis, and
simulation. These strategies, which we will delve
into in Sections [3.1} [3:2] and [3:3] each bring their
unique benefits and drawbacks. Furthermore, it
is important to note that some techniques used
for gathering data locality information may not be
confined to just one of these three fundamental
categories, and could instead exhibit characteristics
of multiple approaches.

Once data locality information is gathered, it
needs to be presented in a user-friendly manner.
There exists a wide variety of visualization tech-
niques that can fulfill this requirement, some of
which we will detail in Section [l

Finally, in Section [5] we will provide a brief
overview of the standard procedure a performance
engineer employs to pinpoint memory-related bot-
tlenecks and subsequently enhance the program’s
data locality.

3.1 Dynamic Analysis

Dynamic analysis involves examining a program’s
data locality by running the program and simultane-
ously collecting relevant memory-oriented data and
statistics. These techniques are widely utilized not
only for memory performance analysis, but also to
gain a comprehensive understanding of a program’s
overall performance. Hardware counters, special-
purpose registers built into CPUs, are commonly
used to measure diverse aspects of a program’s ex-
ecution including the number of cache misses, the
number of instructions executed, and the number
of floating-point operations performed.

Nevertheless, for effective performance analysis,
it is essential to pinpoint the exact location in the
source code where bottlenecks occur, such as specific
lines of code or function calls. In the absence of this
contextual information, discerning the root cause
of a performance issue can be challenging. Thus,
simply monitoring hardware counters during the
program’s execution is insufficient. It is equally
crucial to track the program’s execution flow, so
that the hardware counter data can be tied back to
the source code. This can, for example, be achieved
through the instrumentation of the program’s source
code with additional instructions that record the
program’s execution and store performance-related
data.



There exist several prominent techniques for dy-
namic analysis of a program’s data locality. Pro-
filing works by capturing both hardware-derived
attributes and context-related information for speci-
fied regions of a program and aggregating the results
into a single report per region [13-15]. Profiling tech-
niques analyze the program’s call stack and program
counter to provide specific details such as the cur-
rent line of code being executed, the symbol, and,
for arrays, the accessed index. This information
facilitates the derivation of deeper metrics, such as
the number of cache misses per array [15].

Tracing, another technique, allows for a temporal
understanding of a program’s behavior by logging
event-specific data over time. Tracing functions by
documenting specific events or functions during pro-
gram execution, providing a chronological account
of these events and their corresponding data. This
timeline view of the data contrasts the result that
profiling produces, where data is aggregated per
instrumented region [15H17].

Profiling and tracing can be implemented through
source code instrumentation, recording all perti-
nent memory accesses. In this way, all relevant
memory accesses are recorded. An alternative to
instrumentation is statistical sampling, capturing
the program’s state at regular intervals instead of
event-triggered measurements. The advantage of
statistical sampling over instrumentation is that it
avoids frequent interruption of the program’s exe-
cution, reducing the runtime overhead. However,
high-quality measurements require sufficiently high
sampling rates to capture all relevant details [15].
Hence, a trade-off between the granularity and the
quality of the measurements is necessary.

In conclusion, dynamic analysis offers several dis-
tinct advantages in the study of a program’s be-
havior concerning data locality. As the program is
being executed, it offers precise practical insights
into hardware oriented data locality optimization.
Further, dynamic analysis can be employed in con-
junction with actual data, making it more represen-
tative of real-world scenarios.

However, it is important to note the inherent dis-
advantages of dynamic analysis. The act of running
an entire program can be time-consuming and costly,
particularly for larger and more complex software.
In addition, dissecting specific parts of a program,
isolated from the rest, can be rather complex, if not
impossible with dynamic analysis. In such cases,
other techniques such as static analysis may be more
applicable.

void square(double &v) {
V=V *y;
}

/7. ‘

square(A[i]);

Figure 2: C++ language source code and its corre-
sponding SDFG representation [20)].

3.2 Static Analysis

Unlike dynamic analysis, static analysis takes a dif-
ferent tack in examining a program’s data locality.
Instead of operating the program in real-time to
gather data, static analysis scrutinizes the program’s
source code itself. By transforming the source code
into an intermediate representation (IR) that cen-
ters on data, and subsequently analyzing this IR,
static analysis is able to uncover memory-related
issues [18-21].

There are myriad of IRs in use, like MLIR [22],
which are predominantly control-flow oriented, fa-
cilitating optimizations pivoting around control el-
ements like loop restructuring [23]. However, in
the context of data locality, data-centric IRs such
as SDFG [24], PROGRAPH |[25], and LabVIEW
[26] provide a more direct approach. By prioritiz-
ing memory, its movements, and its computation-
induced alterations, these IRs allow for both au-
tomated [24] and, when paired with visual aids,
manual enhancements of data locality [19] 21} [24].

Taking the example of SDFGs, the entire data
flow of a program can be represented as a di-
rected graph. Nodes within this graph symbolize N-
dimensional arrays of data, computations (tasklets),
or map scopes that denote general parallelism (such
as loops). The edges, or memlets, in an SDFG
represent explicit data movements [24]. An exam-
ple of the SDFG IR is provided in Figure[2] Here,
the square function found in the source code corre-
sponds to the outer tasklet in the SDFG, symbolized
by the outer octagon. The reference v is the sole
input and output of this function. This function
contains a single computation and assignment v =
v#*v;, which is translated within the SDFG IR to
the tasklet b = a*a;, where a is the input to this
computation and b the output. To signify that the
value stored in the reference v must be loaded prior
and written to following the computation, memlets
are used from v to and from the inner tasklet. Ulti-
mately, the method square is invoked, which aligns
with loading the parameter A[i] into the reference
v and writing the result back to A[i]. In other
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Figure 3: Left: Coloring in-memory volume onto memlets and arithmetic intensity onto tasklets in an
SDFG . Right: HPCToolkit’s viewer, which displays the program’s source code and its
corresponding memory access information [15].

words, the two memlets of A from and to the func-
tion’s tasklet correspond to the loading and writing
actions.

After the SDFG IR of a program is constructed,
it is possible to compute memory-related properties
crucial for data locality. For instance, each memlet
carries information regarding the volume of data
transported between nodes , and tasklets and
nested SDFGs can be annotated with metadata re-
lated to the number of executions and arithmetic
operations undertaken . Consequently, SDFGs
offer a comprehensive view of the program and facili-
tate the identification of data movement bottlenecks
on a large scale.

Despite static analysis’s robust capability for
macroscopic program analysis - a trait shared with
dynamic analysis - it does not provide the same level
of accuracy in the details. Given that performance
bottlenecks are often induced by memory accesses
that are tied to physical access patterns and hence
are hardware-specific, static analysis alone may not
accurately predict, for example, the number of cache
misses for a particular function. However, the ad-
vantage of static analysis lies in the fact that it
does not necessitate program execution, thereby en-
abling quicker and more cost-effective optimization
of logical data movements compared to dynamic
analysis.

3.3 Cache Simulation

Positioned between dynamic and static analysis lies
the realm of simulation-based approaches, of which

cache simulation is particularly noteworthy. Cache
simulation is a method used to simulate a program’s
data accesses on a virtual memory hierarchy model.
This process allows for an in-depth examination of
both spatial and temporal data locality, as intro-
duced on in Section 2.4

The process of setting up a cache simulator can
be divided into two ways:

In the first approach, the program is pseudo-
executed without any of its actual computations.
This process starts by constructing a virtual memory
hierarchy that includes caches, in an optimal sce-
nario fully reconstructing an identical virtual copy
of the actual hardware in use. Here the underlying
protocols of the hardware are also recreated, such
as the cache miss procedure as discussed in Section
As the program proceeds through its lifecycle,
corresponding space is allocated in the simulated
memory for each instance of allocation, and recip-
rocally, space is deallocated as per the program’s
instructions. The simulator emulates each memory
access operation, both read and write, according to
how a CPU would handle the task. This entails an
initial probe in the L1 cache, followed by a potential
cache miss protocol if the required data is absent,
as discussed in Section [2.3] This methodology facil-
itates a comprehensive and accurate representation
of the system’s memory hierarchy and its interaction

with the computing process 27].

The second approach uses dynamic analysis (Sec-
tion [3.1]) to generate memory traces. These traces
are then rerun through the simulator similarly to the



previously described approach. Replaying memory
traces enables performance engineers to better un-
derstand memory access and management behavior
within the program .

The deployment of cache simulators extends be-
yond mere prediction of cache misses. When oper-
ated in a step-by-step manner, these tools permit
the exploration of data access patterns of a proce-
dure at a granular level. Such detailed inspection
can uncover potential enhancements in spatial lo-
cality, either through modifications in data layout
or access strategies, ultimately contributing to im-
proved performance 28].

Moreover, cache simulation enables close-up per-
formance analysis of a program, such as focusing on
a single function within the source code or limiting
memory traces to a specific functional context.

Despite its advantages, accurate cache simulation
demands accurate representation of the target archi-
tecture, including aspects like cache hierarchy, cache
replacement policy, and cache coherence protocol.
Any inaccuracies in these parameters can lead to
misleading results, potentially causing optimization
attempts to inadvertently degrade the program’s
data locality. As such, securing the necessary infor-
mation to build a virtual memory hierarchy, whether
automated or utilizing the performance engineer’s
extensive knowledge of the hardware, is essential for
successful performance optimization through cache
simulation.

4 Visualization Techniques

Visualization is an essential aspect of data local-
ity analysis, providing the vital link between the
analysis results and user comprehension. Effective
visualization techniques should balance intuitiveness
and informational value. Generally, visualizations
for memory-related data can be classified into three
categories, each catering to a specific level of detail:

4.1 High-Level View

This category of visualization provides the most
abstract or "bird’s eye" view of data locality, aiming
to deliver a global understanding of the program’s
performance. It emphasizes the logical data move-
ment behavior, spotlighting the performance impact
of individual parts of the program ,
as illustrated in Figure [3] The left portion of the
figure displays a colored-in SDFG IR of the pro-
gram, used to demonstrate the arithmetic loads
of specific program parts (tasklets), as well as the
volume of data circulated throughout the program
(memlets). Here, tasklets and memlets marked in

//fﬂ%\\
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Figure 4: Left: Illustration of the radial design used
to represent the hardware topology. Main
memory resources are here illustrated in
deep purple and processing units in dark
orange, with different layers of caches in
between. Right: A concrete complex ar-
chitecture is portrayed based on the radial
design on the left, featuring performance
data tagged onto the hardware resources
through a color code, and transactions
among them indicated by line thickness

[14).

red signify above-average intensity, indicating these
areas are particularly noteworthy for further ex-
ploration concerning performance bottlenecks .
The figure’s right side presents a snapshot view
of the HPCToolkit’s viewer, wherein performance-
related issues can be traced to their source using
a hierarchical view of the program’s execution .
In general, an integral feature of such high-level vi-
sualizations is hierarchical clustering, which allows
users to zoom into specific areas of the program.
Despite providing a broad performance landscape,
these visualizations do not shed light on the root
causes of identified bottlenecks, warranting a more
detailed examination.

4.2 Intermediate-Level View

At the intermediate level, visualizations offer more
detailed insights than high-level overviews, target-
ing specific segments of the program like functions
or loops. One common technique involves displaying
the hardware topology to visualize physical data
movements across different levels of the memory
hierarchy, as well as operational intensity for each
memory module, as shown in Figure [d This more
granular perspective assists in understanding perfor-
mance bottlenecks and can help identify the most
promising optimization opportunities . Yet,
it does not provide information about underlying
problematic data layout or access patterns, necessi-
tating a deeper, fine-grained examination.
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4.3 Detailed View

The detailed or fine-grained visualizations delve into
specific aspects like data layout and access patterns
within specific program segments, for instance, a
loop nest. Figure [5| displays two examples of such
visualizations. The left image illustrates the data
layout of a matrix, highlighting the spatial locality
of elements within a cache line. The right image
presents the access patterns of a loop nest, showing
the correlation between accesses to different arrays.
This level of visualization aids in identifying poten-
tial optimization routes, such as reshaping data to
improve spatial locality or reordering the loop to
enhance data access patterns [18]. However, these
visualizations provide insights into only one pro-
gram segment at a time and lack a broader picture
of the program’s overall data locality. Therefore,
it is advisable to use a mix of visualization tech-
niques to obtain a comprehensive understanding of
a program’s data locality.

5 Optimization Workflow

In the realm of performance optimization, the work-
flow that an engineer undertakes unfolds in a pro-
gressive manner, moving from a macroscopic to
a microscopic examination of a program’s perfor-
mance characteristics. This sequential inspection
process serves to identify, understand, and eventu-
ally resolve performance bottlenecks, particularly
those related to data locality.

The optimization journey commences with a high-
level, panoramic view of the program’s performance

landscape (Section . This abstracted perspec-
tive provides a global understanding of how the pro-
gram operates, emphasizing performance aspects
on a module, function, or code-line level. However,
while these coarse-level views may signal where per-
formance issues lie, they often fall short in explain-
ing the "why" behind these issues - the root causes
that contribute to elevated memory intensity or the
sub-optimal utilization of resources.

For these deeper insights, the engineer transitions
to more granular, intermediate-level views (Section
. These visualizations elucidate the interactions
between particular program components and the
memory hierarchy, shedding light on data move-
ments across different cache or memory levels and
their impact on performance.

In cases where performance irregularities remain
elusive, the engineer resorts to the most detailed,
low-level views (Section [4.3]). These visualizations
put the data access patterns under a microscope, of-
fering the necessary detail to pinpoint, understand,
and eventually rectify the root causes of perfor-
mance issues.

This stepwise deepening in focus, from high to
intermediate to low-level views, constitutes the typi-
cal progression within the performance optimization
workflow. However, it is crucial to note that not
every tool caters to each level of granularity.

In the following section (Section @, we will ex-
plore several prominent tools dedicated to visual-
izing memory movements and accesses. We will
discuss their capabilities in data gathering, visualiza-
tion techniques, and their ability to provide insights
at different levels of detail. We will contrast these
tools, emphasizing their respective strengths and
weaknesses, and the extent to which they support
the comprehensive workflow outlined above.

6 Exemplary Memory Access
Visualization Tools

This section examines several prominent works ded-
icated to visualizing memory movements and ac-
cesses. Each tool will be discussed in terms of its
data gathering methods, visualization techniques,
and demonstrated results. We will then contrast
these tools, highlighting their strengths and weak-
nesses.



Figure 6: Left: Radial design used in |28]. Glyphs arrange themselves into groupings indicating storage on
the same cache, with data closer to the boundaries between the levels more likely to be evicted.
Right: A comparison of a standard 16 x 16 matrix multiplication and an optimized version
using 4 x 4 blocking. The colors green, purple, and orange represent the memory locations
belonging to the left- and right-hand matrices of the multiplication, and its output matrix. Red
colored traces signify cache misses. The standard version shows poor data reuse for two of the

three matrices [2§].

6.1 MemAxes: Visualization and
Analytics for Characterizing Complex
Memory Performance Behaviors

The tool MemAxes, developed by Giménez et al. |14],
utilizes dynamic analysis (Section to generate
an event log of memory accesses. Each logged event
incorporates contextual information, facilitating a
link back to the source code and recording the mem-
ory hierarchy depth at which the memory access
occurred. This feature allows for the identification of
problematic code lines, similar to HPCToolkit [15],
as illustrated in Figure [3] Recording the resolution
depth of memory accesses enables the determination
of resource utilization across each memory module
and the quantification of physical data movements
between them. This information is then visualized
using a radial design of the hardware topology, as
seen in Figure[d] MemAxes also supports the display
of additional attributes such as access times, laten-
cies, and memory addresses through histograms.

In practical applications, MemAxes has been em-
ployed successfully to detect and mitigate perfor-
mance bottlenecks, even without prior knowledge
of the application’s source code [14]. Performance
engineers can, for instance, identify large load im-
balances or significant spikes in access times, and
use these insights to hypothesize the cause of a per-
formance bottleneck. This hypothesis can then be
explored further through the backlink to the source
code. This approach demonstrates that low-level
visual aids are not always necessary for optimizing
data locality in an unfamiliar program.

6.2 Abstract Visualization of Runtime
Memory Behavior

Choudhury et al. |28] offer a unique perspective
on runtime memory behavior through their visual-
ization tool, conceptually different from MemAxes.
Their approach involves dynamic analysis to record
an event log of memory accesses during runtime
(Section (3.1]), which then feeds a cache simulator
(Section . The output is a series of radial visu-
alizations, exemplified in Figure [6] which are gener-
ated throughout the program’s execution, forming
an animation of evolving data movements within
the memory hierarchy.

The visualization in Figure[6]uses a concentric lay-
out to demonstrate memory usage patterns. Glyphs,
symbolizing memory locations, move across layers
representing main memory and different cache lev-
els. Movements towards the center imply recent
references, while those towards the periphery indi-
cate aging or eviction. Performance issues, such as
inefficient memory usage or frequent evictions, are
suggested by rapid, large-distance glyph movements.
Conversely, slow in-layer movement indicates high
cache hits, signaling efficient memory utilization
[28].

Choudhury et al. argue that this dynamic ap-
proach is more intuitive than static visualizations,
such as those provided by MemAxes, as it presents an
overview of large-scale memory access and caching
behavior. However, its granularity is insufficient
for targeted bottleneck resolution, given that the
visualizations lack linkage to specific contextual in-
formation such as precise addresses or lines of code.



6.3 Boosting Performance Optimization
with Interactive Data Movement
Visualization

The tool developed by Schaad et al. [18| [19] enables
two-tier program analysis: At the global level, static
analysis (Section is used to compile the pro-
gram source code into an SDFG graph, providing an
overview as shown in Figure [3] This graph, with its
color-customizable nodes and edges, aids in identify-
ing problematic program sections, especially when
utilizing the automatic node and edge collapsing
feature for easy zooming. For in-depth analysis of
data locality and reuse behavior, the tool uses cache
simulation (Section to offer detailed views of
specific program segments, as depicted in Figure

The authors successfully employed this tool to sig-
nificantly optimize two applications. After pinpoint-
ing problem areas in the global view, the engineers
utilized the local view for a thorough investigation
and subsequent optimization of these areas.

6.4 Comparison

Among the three tools, the animation provided by
Choudhury et al. [28] offers the most intuitive under-
standing of large-scale memory access and caching
behavior. However, comprehensive program opti-
mization requires contextual information about in-
efficient memory access locations, which is supplied
by MemAxes [14] and the tool by Schaad et al. [19].
Of all three, Schaad et al’s tool provides the most
detailed low-level visualizations. The tool’s ability
to depict the influence of data layout on the cache
hit ratio proves invaluable for optimizing data local-
ity. However, the tool’s reliance on cache simulation
necessitates consideration of parameterization, as
discussed in Section 3.3

7 Conclusions

This paper provided a comprehensive exploration
of the different methodologies employed to under-
stand and visualize data movements and accesses in
computer programs, an imperative for optimizing
performance. The data acquisition processes are
based on three principal methodologies, which can
often be combined to achieve a more comprehensive
analysis. Dynamic Analysis, involving the execu-
tion of a program to gather data, provides accurate
results, albeit time-consuming. Static Analysis, on
the other hand, is a swift method that just analyzes
the source code, bypassing the need for program
execution, but can sometimes produce insufficient
insights. Lastly, Cache Simulation offers an in-depth

understanding of a program’s interaction with the
memory hierarchy, allowing for a meticulous exami-
nation of its performance.

Once the data locality information is collected,
it becomes essential to present it in an intuitive
yet informative way. Here, visualizations play a
critical role. These visualizations, varying in their
granularity, offer insights into different levels of the
program, from high-level overviews to fine-grained
dissections of memory usage. The use of multiple
visualizations in tandem empowers performance en-
gineers to gain a comprehensive understanding of
data movements and accesses, leading to effective
bottleneck resolution.

In this regard, we delved into three prominent
works that provide unique tools for visualizing data
movements and accesses. Each work was presented
and compared, highlighting their distinctive contri-
butions to the wider landscape of methods employed
in this domain.

The broad-ranging implications of these methods
were underscored, highlighting their relevance to
not just high-performance computing (HPC) but
to any application that would benefit from perfor-
mance optimization. This paper thus provides a
solid foundation for understanding and visualizing
data movements and accesses, a crucial aspect of
programming and performance engineering.

As we look to the future, the field holds exciting
prospects. The continuous refinement of data gath-
ering methods and visualizations is one aspect, but
the ultimate goal extends to automatic program op-
timization. Initiatives have already been launched
to develop algorithms for automatic optimization
[20], significantly easing the programmer’s workload.
Such advancements could be especially beneficial
for domain researchers, allowing them to focus more
on their domain-specific work.

The emergence of machine learning, particularly
deep learning, also presents new avenues for pro-
gram optimization. Preliminary work in this area
indicates that future compilers might utilize ma-
chine learning for automatic, compile-time program
optimization [29].

In conclusion, the tools and methods presented in
this paper provide a solid foundation for understand-
ing and visualizing data movements and accesses, a
crucial aspect of optimizing program performance.
With ongoing advancements in automatic program
optimization and the advent of machine learning
techniques, the future looks bright for further im-
provements in this vital aspect of programming and
performance engineering.
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