
Component Bound Branching in a
Branch-and-Price Framework

Master Thesis in Computer Science
RWTH Aachen University

Til Mohr
til.mohr@rwth-aachen.de

Student ID: 405959

Aachen, September 17, 2024

1st Examiner
Prof. Dr. Peter Rossmanith

Chair of Theoretical Computer Science
RWTH Aachen University

2nd Examiner
Prof. Dr. Marco Lübbecke

Chair of Operations Research
RWTH Aachen University

2

Acknowledgements
I would like to express my sincere gratitude to my Professor and Supervisor, Prof.
Lübbecke, for his guidance and support throughout this thesis. His expertise and
valuable insights have been instrumental in shaping this work.

I would also like to thank Erik Mühmer for his assistance and support during
the implementation phase in GCG, providing valuable feedback and guidance.

Furthermore, I would like to extend my thanks to Oliver Gaul for the valuable
discussions regarding some theoretical ideas.

Lastly, I would like to acknowledge Marc Ludevid Wulf for providing the
inspiration to use unrolled linked lists to further improve the memory layout for
the variable synchronization.

I am grateful to all the individuals mentioned above for their contributions and
support, which have been crucial in the successful completion of this thesis.

3

4

Abstract

This master thesis integrates the component bound branching rule, originally pro-
posed by Vanderbeck et al. [1, 2] and later reformulated by Desrosiers et al. [3], into
the branch-price-and-cut solver GCG. This rule, similarly to Vanderbeck’s generic
branching scheme [4], exclusively operates within the Dantzig-Wolfe reformulated
problem, where branching decisions generally have no corresponding actions in
the original formulation. The current GCG framework requires modifications for
such branching rules, especially within the pricing loop, as seen in Vanderbeck’s
method implementation. These rules also fail to utilize enhancements like dual
value stabilization.

A significant contribution of this thesis is the enhancement of the GCG archi-
tecture to facilitate the seamless integration of new branching rules that operate
solely on the reformulated problem. This allows these rules to benefit from current
and future advancements in the branch-price-and-cut framework, including dual
value stabilization, without necessitating alterations to the implementation of the
branching rule itself.

The thesis proposes an interface to manage constraints in the master problem
that lack counterparts in the original formulation. These constraints require specific
modifications to the pricing problems to ensure their validity in the master. The
generic mastercut interface, tightly integrated into the GCG solver, spans the
pricing loop, column generation, and dual value stabilization. Enhancements to
the existing branching rule interface complement this integration, enabling effective
utilization of the generic mastercuts.

Finally, the component bound branching rule will be implemented using this
new interface and evaluated on a set of benchmark instances. Its performance
will be benchmarked against the existing Vanderbeck branching rule, offering a
practical comparison of both approaches.

2

Contents

1 Introduction 5

2 Preliminaries 7
2.1 Polyhedron Representation . 7
2.2 Primal Simplex Algorithm . 10

3 Column Generation and Branch-and-Price 13
3.1 Column Generation . 13

3.1.1 Farkas Pricing FP-SP . 14
3.1.2 Reduced Cost Pricing RCP-SP 15
3.1.3 Column Generation Algorithm 15

3.2 Dantzig-Wolfe Reformulation . 17
3.3 Dantzig-Wolfe Reformulation for Integer Programs 19

3.3.1 Convexification . 20
3.3.2 Discretization . 21

3.4 Several and Identical Subproblems 22
3.5 Branch-and-Price . 25

3.5.1 Branching on the Original Variables 26
3.5.2 Branching on the Master Variables 27

3.6 Branch-Price-and-Cut . 31
3.6.1 Separators using the Original Formulation 32
3.6.2 Separators using the Master Problem 32

3.7 Dual Value Stabilization . 33

4 SCIP Optimization Suite 37
4.1 GCG . 37

5 Component Bound Branching 39
5.1 Overview of the branching scheme 39
5.2 Separation Procedure . 42

5.2.1 Choice of Component Bounds 43

3

5.2.2 Post-processing of Component Bound Sequences 44
5.2.3 Branching with Multiple Subproblems 45

5.3 Comparison to Vanderbeck’s Generic Branching 45

6 Master Constraints without corresponding Original Problem Con-
straints 47
6.1 Conceptual Framework and Definition 47
6.2 Mastervariable Synchronization across the entire Search Tree 49

6.2.1 Current Approach used by the Implementation of Vander-
beck’s Generic Branching . 50

6.2.2 History Tracking Approach 51
6.2.3 History Tracking using Unrolled Linked Lists Approach . . . 54

6.3 Dual Value Stabilization for Generic Mastercuts 54

7 Implementation 57
7.1 Generic Mastercuts . 57
7.2 Mastervariable Synchronization . 59
7.3 Component Bound Branching . 60

8 Evaluation 61
8.1 Test Set of Instances . 61
8.2 Comparison of the different Separation Heuristics 61
8.3 Comparison to Vanderbeck’s Generic Branching 65
8.4 In-Depth Analysis of the First-Stage Separation Heuristics and the

Effect of Dual Value stabilization 66

9 Conclusion 71

4

Chapter 1

Introduction

The development of efficient algorithms for solving large-scale mixed-integer pro-
gramming (MIP) problems has been a central focus of operations research for
decades. Column generation, a powerful technique for solving large-scale linear
programs, has been extended to integer programs through the branch-and-price
algorithm. The effectiveness of branch-and-price relies heavily on the branch-
ing strategies employed and the ability to integrate various constraints into the
reformulated problem during column generation.

In this thesis, we explore advanced branching rules and constraints within the
context of the branch-and-price framework, particularly focusing on the imple-
mentation and evaluation of the component bound branching rule. This rule, as
formulated by Desrosiers et al. [3], offers a simpler alternative to Vanderbeck’s
generic branching scheme [4] for branching on so-called component bound sequences
[2]. As both branching rules operate entirely within the reformulated problem,
integrating them into a branch-and-price framework requires careful consideration
of the underlying mathematical structure and the implementation details.

The foundational concepts of polyhedron representation and the primal simplex
algorithm are introduced in Chapter 2, providing the mathematical and algorithmic
background necessary for understanding the core methods discussed later. In
Chapter 3, we delve into the specifics of column generation and branch-and-price,
detailing the algorithms and their implementation, including the Dantzig-Wolfe
reformulation, which serves as the basis for the decomposition approach used in
branch-and-price.

Chapter 4 provides a brief overview of the SCIP Optimization Suite, with a
particular focus on the GCG solver, which forms the foundation for the implemen-
tation work carried out in this thesis. In Chapter 5, we present the component
bound branching rule in detail, including its separation procedure and a theoretical
comparison to Vanderbeck’s generic branching scheme.

One of the major contributions of this thesis is the introduction of a new

5

interface within GCG for handling constraints that exist solely within the master
problem, termed generic mastercuts. These constraints, which do not have a
direct counterpart in the original problem, require special handling within the solver,
particularly with respect to synchronizing master variables across the search tree
and applying dual value stabilization. Chapter 6 begins by presenting the conceptual
framework and definition of generic mastercuts, followed by an elaboration on the
synchronization mechanisms and the application of dual value stabilization for
these constraints, highlighting the technical innovations introduced in this thesis.

Chapter 7 focuses on the implementation aspects, detailing how the generic
mastercut interface was integrated into GCG, and how it supports the component
bound branching rule.

The effectiveness of the component bound branching rule and the generic
mastercut interface is rigorously evaluated in Chapter 8. We compare different
separation heuristics and analyze the impact of dual value stabilization on the
performance of the branching rule. Additionally, a detailed comparison with
Vanderbeck’s generic branching scheme provides insights into the conditions under
which the component bound branching rule may offer advantages.

6

Chapter 2

Preliminaries

This chapter introduces essential notation and concepts that will be utilized through-
out this thesis. Additionally, it provides an overview of key theorems and algorithms
that form the basis of the techniques discussed in subsequent chapters. For a com-
prehensive introduction to these topics, readers are referred to Chapter 1 of the
book Branch-and-Price by Desrosiers et al. [3].

2.1 Polyhedron Representation

Definition 2.1. Given k points x1, . . . , xk ∈ Rn, any x = ∑k
i=1 αixi is a conic

combination of the xi, iff ∀i ∈ {1, . . . , k}.αi ≥ 0.

Definition 2.2. Given k points x1, . . . , xk ∈ Rn, any x = ∑k
i=1 αixi is a convex

combination of the xi, iff ∑k
i=1 αi = 1 ∧ ∀i ∈ {1, . . . , k}.αi ≥ 0.

The set of all convex combinations of x1, . . . , xk is therefore defined as:

conv(x1, . . . , xk) :=
{

k∑
i=1

αixi | αi ≥ 0, i = 1..k,
k∑

i=1
αi = 1

}

Corollary 2.1. The intersection of two convex sets is convex.

Definition 2.3. Let P be a convex set. A point p ∈ P is an extreme point of P
if there is no non-trivial convex combination of any two points in P expressing p,
i.e.:

∀x1, x2 ∈ P .∀α ∈ (0, 1) .x1 6= x2 =⇒ p 6= αx1 + (1− α)x2

Definition 2.4. Let P be a convex set. A vector r ∈ Rn
+\{0} is a ray of P iff

∀x ∈ P .∀β ∈ R+.x + βr ∈ P.
The cone of rays r1, . . . , rk ∈ Rn

+\{0} is denoted as:

7

cone(r1, . . . , rk) :=
{

k∑
i=1

αiri | αi ≥ 0, i = 1..k

}

Definition 2.5. A ray r of P is an extreme ray of P if there is no non-trivial
conic combination of any two rays in P expressing r, i.e.:

∀r1, r2 ∈ P .∀α1, α2, β ∈ R+\{0}.r1 6= βr2 =⇒ r 6= α1r1 + α2r2

Definition 2.6. A hyperplane H ⊂ Rn of a n-dimensional space is a subspace of
dimension n− 1, and can therefore be described using a vector f ∈ Rn and a scalar
f ∈ R as H = {x | fᵀx = f}.

Corollary 2.2. Any hyperplane is a convex set.

Definition 2.7. A halfspace is the set either above or below a hyperplane. A
halfspace is open if the points on the hyperplane are excluded; otherwise, it is closed.

Corollary 2.3. Any halfspace is a convex set.

Definition 2.8. A polyhedron P ⊆ Rn is defined by the intersection of a set of
closed halfspaces, i.e., P := {x ∈ Rn | Ax ≥ b}, with A ∈ Rm×n, b ∈ Rm.

Corollary 2.4. A polyhedron is a convex set.

Definition 2.9. The Minkowski sum of two sets P, Q is defined by:

P ⊕Q := {p + q | p ∈ P ∧ q ∈ Q}

Theorem 2.1 (Minkowski-Weyl [3, 5]). For P ⊆ Rn the following statements are
equivalent:

1. P is a polyhedron, i.e., there exists some finite matrix A ∈ Rm×n and some
vector b ∈ Rm such that P = {x ∈ Rn | Ax ≤ b}

2. There exist fine vectors v1, . . . , vs ∈ Rn and finite vectors r1, . . . , rt ∈ Rn
+,

such that P = conv(v1, . . . , vs)⊕ cone(r1, . . . , rt)

In simple terms, the Minkowski-Weyl theorem states that any polyhedron can
always be defined in two ways: either by its faces, i.e., closed halfspaces, or by
its vertices and rays. Any polyhedron can be represented in this way using only
its extreme points and extreme rays. Figure 2.1 illustrates this theorem on two
exemplary polyhedra.

The following theorem builds upon the Minkowski-Weyl theorem to describe a
polyhedron, which is represented by its extreme points {xp}p∈P and extreme rays
{xr}r∈R, using hyperplanes. Here, the sets P, R are used to index the extreme
points and extreme rays, respectively.

8

Figure 2.1: Illustration of the Minkowski-Weyl theorem. The left figure shows a
polytope represented by its extreme points. Unbounded polyhedra, such as the one
on the right, require extreme rays, shown in red, for a complete description.

Theorem 2.2 (Nemhauser-Wolsey [3, 6]). Consider the polyhedron P = {x ∈ Rn |
Qx ≥ b} with full row rank matrix Q ∈ Rm×n, i.e., rank(Q) = m ≤ n ∧ P 6= ∅.

An equivalent description of P using its extreme points {xp}p∈P and extreme
rays {xr}r∈R is:

P =


x ∈ Rn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
p∈P

xpλp+
∑
r∈R

xrλr = x

∑
p∈P

λp = 1

λp ≥ 0 ∀p ∈ P

λr ≥ 0 ∀r ∈ R


(2.1)

The conditions of the Minkowski-Weyl theorem are clearly encoded in the
Nemhauser-Wolsey theorem: the second and third lines ensure that the convex
set of the extreme points is considered in the first line (Definition 2.2), the last
pertains to the cone of extreme rays (Definition 2.4), and the first line represents
the Minkowski sum of the convex hull of extreme rays and the cone of extreme
rays.

By requiring x ∈ Zn in Theorem 2.2, we can also describe the integral polyhedra
using possibly fractional extreme points and rays. Alternatively, the Nemhauser-
Wolsey theorem has been adapted to describe integral polyhedra using only integral
(interior) points and (integer-scaled) extreme rays, as shown in the following
theorem.

Theorem 2.3 (Nemhauser-Wolsey [3, 6]). Consider the polyhedron P = {x ∈ Rn |
Qx ≥ b} with full row rank matrix Q ∈ Rm×n, i.e., rank(Q) = m ≤ n ∧ P 6= ∅.
Have Q := P ∩ Zn 6= ∅ be the integer hull of P.

An equivalent description of Q using a finite subset {xp}p∈P̈ of its integer points
and its (integer-scaled) extreme rays {xr}r∈R is:

9

Q =


x ∈ Zn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
p∈P̈

xpλp+
∑
r∈R

xrλr = x

∑
p∈P̈

λp = 1

λp ∈ {0, 1} ∀p ∈ P̈

λr ∈ Z+ ∀r ∈ R


(2.2)

Note 2.1. A notable difference between the Nemhauser-Wolsey theorem for real
polyhedra and integral polyhedra is that for the former it suffices to use extreme
points and extreme rays, while for the latter, interior points of Q might be required
to describe the integer hull Q.

2.2 Primal Simplex Algorithm
Consider the following linear program in standard form:

min cᵀx

s. t. Ax = b [π]
x ≥ 0

(2.3)

The primal simplex algorithm [7] finds an optimal solution by moving from one
extreme point of the polyhedron to the next, therefore always remaining feasible.
A central aspect of this algorithm is the sufficient optimality condition. For a basic
solution X = [xB, xN] at a given extreme point to be optimal, the reduced costs
c̄j := cj − πᵀaj for j ∈ N must be non-negative.

This sufficient optimality condition leads to the pricing problem, which either
verifies the optimality of the current basic solution or identifies the non-basic
variable xl, l ∈ N , with the least reduced cost (c̄l < 0) to be introduced into the
basis next, following Dantzig’s rule [3, 7, 8]. Formally, this is expressed:

l ∈ arg min
j∈N

cj − πᵀaj

or as the linear program:
c̄(π) = min

j∈N
cj − πᵀaj (2.4)

Solving the pricing problem is integral to the primal simplex algorithm:

10

Algorithm 2.1: Primal simplex algorithm with Dantzig’s rule
Input: LP in standard form (2.3); Basic and non-basic index-sets B,N
Output: Optimal Solution (x, z)

1 loop
2 πᵀ ← cᵀ

BA−1
B ; b̄← A−1

B b;
3 c̄j ← cj − πᵀaj; ∀j ∈ N
4 l← arg min

j∈N
c̄j; c̄(π)← c̄l;

5 if c̄(π) ≥ 0 then
6 return

([
b̄, 0

]
, cᵀ

BxB
)

by optimality
7 end
8 āl ← A−1

B al;
9 if āl ≤ 0 then

10 return None by unboundedness
11 end
12 s← arg min

i∈{1,...,m}

b̄i

āil
; xl ← b̄s

āsl
; B ← B ∪ {l} ⊆ {s}; N ← N ∪ {s} ⊆ {l};

11

12

Chapter 3

Column Generation and
Branch-and-Price

3.1 Column Generation
Consider the following linear program, referred to as the master problem MP,
where cx ∈ R, ax, b ∈ Rm,∀x ∈ X :

z∗
MP = min

∑
x∈X

cxλx

s. t.
∑
x∈X

axλx ≥ b [π]

λx ≥ 0 ∀x ∈ X

(3.1)

Assume the number of variables is significantly larger than the number of
constraints (m� |X | <∞). Because of this, solving MP directly in a reasonable
time frame, or at all, is often infeasible [3].

However, we can utilize a crucial property of the primal simplex algorithm: at
any given vertex solution, only few variables are in the basis. Most variables are in
the non-basis and therefore have a solution value of 0. Having a solution value of 0
is equivalent to not being in the linear program at all. Therefore, the primal simplex
algorithm can operate using a manageable subset of variables X ′ ⊆ X , finding
a feasible, though possibly non-optimal, solution for MP. This master problem
restricted to a subset of variables is called the restricted master problem RMP :

z∗
RMP = min

∑
x∈X ′

cxλx

s. t.
∑

x∈X ′
axλx ≥ b [π]

λx ≥ 0 ∀x ∈ X ′

(3.2)

13

Assuming MP is feasible, two important questions arise for finding an optimal
solution to MP by solving RMP: first, how do we select a subset X ′ of variables,
such that RMP remains feasible? Without this property, no solution for RMP
can be found, which would contradict the feasibility of MP. Secondly, assuming a
solution for RMP is found, possibly even optimal for the RMP, how can we build
upon this solution to eventually find an optimal solution for MP?

The following sections address these questions in detail (Sections 3.1.1 and
3.1.2), leading to the complete column generation algorithm (Section 3.1.3).

3.1.1 Farkas Pricing FP-SP
Assume MP is feasible, but the current selection of variables X ′ ⊂ X results in
RMP being infeasible. The task is to find additional variables such that a new set
X ′′ with X ′ ⊂ X ′′ ⊆ X makes RMP feasible. Consider Farkas’ lemma:

Theorem 3.1 (Farkas’ lemma [3, 9]). Given A ∈ Rm×n and b ∈ Rm, then exactly
one of the following statements holds:

1. ∃x ∈ Rn
+. Ax ≥ b

2. ∃π ∈ Rm. πᵀA ≤ 0 ∧ πᵀb > 0

Given that MP is feasible, the following must hold for MP with A = A|X :

¬∃π ∈ Rm. πᵀA ≤ 0 ∧ πᵀb > 0
⇔∀π ∈ Rm.¬ (πᵀA ≤ 0 ∧ πᵀb > 0)
⇔∀π ∈ Rm. πᵀA > 0 ∨ πᵀb ≤ 0

(3.3)

Considering the infeasibility of RMP we can further derive the following state-
ment:

(∀π ∈ Rm. πᵀA > 0 ∨ πᵀb ≤ 0) ∧
(
∃π ∈ Rm. πᵀA|X ′ ≤ 0 ∧ πᵀb > 0

)
⇒ (¬∀π ∈ Rm. πᵀb ≤ 0) ∧ (∃π ∈ Rm. πᵀA > 0)

(3.4)

Therefore, there exists some variable x ∈ X\X ′ such that its column ax := A|{x}
satisfies πᵀax > 0 for some π ∈ Rm. If none existed, MP would not be feasible.

This process of finding corresponding columns ax to add to RMP can be
formalized as a pricing problem with cost coefficients cx = 0 (Equation (2.4)). Let
us denote this subproblem as the FP-SP:

F(π) = min
x∈X
− πᵀax (3.5)

14

We can add all solutions x with a value of F(π) < 0 to X ′′ := X ′∪{xi}, adding

the corresponding column
[

0
ax

]
to the problem, thus turning any infeasible RMP

feasible [3].

3.1.2 Reduced Cost Pricing RCP-SP

Assume RMP is feasible. Using an appropriate solver, we can construct a solution
that is optimal within RMP, providing us with the dual values π. We now need
to verify whether this solution is also optimal for MP. For this, we can use the
familiar pricing problem from the primal simplex algorithm (Equation (2.4)). Let
us denote this subproblem as the RCP-SP:

c̄(π) = min
x∈X

cx − πᵀax (3.6)

If c̄(π) ≥ 0, no cost-improving column exists and we have proven the optimality
of the current solution for MP . Otherwise, if c̄(π) < 0, there exists some x ∈ X\X ′

with c̄(π) = cx−πᵀax < 0. Similar to how the primal simplex algorithm would swap
this variable into the basis, during column generation we add the corresponding

column
[

cx

ax

]
to RMP [3]. This process ensures that RMP remains feasible.

3.1.3 Column Generation Algorithm

The column generation algorithm can be viewed as a variation of the primal simplex
algorithm. We start by solving the MP with a subset of the original variables,
initialized either as an empty set or using some selection heuristics. If this restricted
master problem RMP is infeasible, we use Farkas pricing to find new variables to
add to RMP, either until it becomes feasible or until there are no new variables
to add, proving the infeasibility of MP. Once RMP is feasible, we solve it to
optimality, using reduced cost pricing to verify whether the solution is also optimal
for MP . If it is, we have found the optimal solution to MP . Otherwise, we add the
corresponding column to RMP and repeat the process [3].

Note 3.1. All columns in RMP are distinct by design. If a subproblem produced a
column already present in RMP, its reduced cost would be non-negative, and it
would not be added to RMP.

15

Algorithm 3.1: Column Generation Algorithm
Input: RMP with subset X ′ ⊆ X , RCP-SP, FP-SP
Output: Optimal Solution (λ, z) for the MP

1 while IsInfeasible(RMP) do
2 (None, π)← Solve(RMP);
3 (x, F(π))← Solve(FP-SP, π);
4 if F(π) ≥ 0 then
5 return None by MP infeasibility
6 end
7 X ′ ← X ′ ∪ {x};
8 A←

[
A ax

]
;

9 end
10 loop
11 (λRMP, π)← Solve(RMP);
12 (x, c̄(π))← Solve(RCP-SP, π);
13 if c̄(π) ≥ 0 then
14 return (λRMP, cᵀ

BxB) by optimality
15 end
16 X ′ ← X ′ ∪ {x};
17 A←

[
A ax

]
;

16

3.2 Dantzig-Wolfe Reformulation

The column generation algorithm presented in Section 3.1 is particularly useful
when we can directly formulate our optimization problem using a master and a
pricing problem. However, many problems are provided in the general form of a
LP. Using the Dantzig-Wolfe reformulation, we can transform such a LP into a
master and pricing problem, making it suitable for column generation [3]. This
section introduces this technique and demonstrates how it can be applied to solve
a LP.

z∗
LP = min cᵀx

s. t. Ax ≥ b [σb]
Dx ≥ d [σd]

x ≥ 0

(3.7)

Consider the above LP. The solution space defined by its constraints can be
viewed as the intersection of the following two polyhedra:

A := {x ≥ 0 | Ax ≥ b} 6= ∅
D := {x ≥ 0 |Dx ≥ d} 6= ∅

(3.8)

Applying the Nemhauser-Wolsey Theorem (Theorem 2.2) on polyhedron D,
we can reformulate the LP using D’s extreme points {xp}p∈P and extreme rays
{xr}r∈R. To achieve this, we substitute the original variables x with these extreme
points and extreme rays using:

x =
∑
p∈P

xpλp +
∑
r∈R

xrλr

cᵀx =
∑
p∈P

cᵀxpλp +
∑
r∈R

cᵀxrλr

Ax =
∑
p∈P

Axpλp +
∑
r∈R

Axrλr

(3.9)

Using the following shorthand notations:

cp := cᵀxp cr := cᵀxr

ap := Axp ar := Axr

(3.10)

We obtain a new MP equivalent to the LP:

17

z∗
MP = min

∑
p∈P

cpλp+
∑
r∈R

crλr

s. t.
∑
p∈P

apλp+
∑
r∈R

arλr ≥ b [πb]∑
p∈P

λp = 1 [π0]

λp ≥ 0 ∀p ∈ P

λr ≥ 0 ∀r ∈ R∑
p∈P

xpλp+
∑
r∈R

xrλr = x ≥ 0

(3.11)

In this formulation, the last constraint corresponds to projecting a solution
of the MP using the λ variables back into a solution of the original LP. As this
constraint is not otherwise involved in the optimization, it is often omitted during
the solving stages and only used afterward to reconstruct a solution using the
original x variables [3].

Since the extreme points and extreme rays of D are often unknown, and their
number might be enormous, solving the MP directly is typically infeasible [3].
Instead, we can generate these columns iteratively using column generation. For
this, we need a subproblem that finds (improving) columns for the MP , i.e., extreme
points and extreme rays of D. We can formulate this pricing problem as follows:

z∗
SP = min (cᵀ − πᵀ

bA) x− π0

s. t. Dx ≥ d [πd]
x ≥ 0

(3.12)

We start by solving the RMP using a subset of the extreme points P ′ ⊂ P and
extreme rays R′ ⊂ R, yielding the dual values πb and π0 for the SP. Solving this
SP to optimality then leads to a solution x∗ with objective value z∗

SP. The value of
z∗

SP determines whether we add a column to RMP , and if so, which column to add:

• If −∞ < z∗
SP < 0, x∗ is an extreme point xp, p ∈ P\P ′, and we add columncᵀx∗

Ax∗

1

 to RMP.

• If z∗
SP = −∞, x∗ is an extreme ray xr, r ∈ R\R′, and we add column

cᵀx∗

Ax∗

0


to RMP.

18

• If z∗
SP ≥ 0, there exists no improving column for RMP, and the column

generation algorithm terminates.

While theoretically, the grouping of constraints in the original LP formulation
for the Dantzig-Wolfe reformulation does not change the optimal solution, in
practice, the choice of grouping can significantly impact the performance of the
column generation algorithm. Since many iterations of the column generation
algorithm are often required to find an optimal solution, ideally, one wants SP
to be efficiently solvable. Numerous efficient algorithms for specific optimization
problems exist, and by grouping constraints in a way that SP corresponds to such
structures, one can leverage these algorithms to solve SP efficiently [3]. Although
there are ways to find such groupings automatically, this topic is beyond the scope
of this thesis.

3.3 Dantzig-Wolfe Reformulation for Integer Pro-
grams

Dantzig-Wolfe reformulation can also be applied to integer programs. In this
section, we will show how to reformulate an integer program into a master and
pricing problem, specifically focusing on the integrality conditions. Later, in Section
3.5, we will explore how to solve such an integer program using column generation.

Consider the following integer program:

z∗
IP = min cᵀx

s. t. Ax ≥ b [σb]
Dx ≥ d [σd]

x∈ Zn
+

(3.13)

Again, we group the constraints into two sets:

A := {x∈ Zn | Ax ≥ b} 6= ∅
D := {x∈ Zn |Dx ≥ d} 6= ∅

(3.14)

Note that A and D are now the integer hulls of the original polyhedra. For
simplicity, let us denote the convex hulls defined by both groups of constraints as:

A′ := {x ≥ 0 | Ax ≥ b} 6= ∅
D′ := {x ≥ 0 |Dx ≥ d} 6= ∅

(3.15)

There are two ways to proceed from here. The straightforward approach, called
Convexification, follows the method seen in the Dantzig-Wolfe reformulation of

19

linear programs, retaining the integrality constraints on x in both the master and
pricing problem. Alternatively, in Discretization, we modify our approach slightly,
adding integrality constraints to the master variables to ensure the integrality of
the original variables.

3.3.1 Convexification
As seen in Section 3.2, we can reformulate the polyhedron D, which is now the
integer hull defined by the constraints Dx ≥ d, using the Nemhauser-Wolsey
Theorem (Theorem 2.2). This results in a master problem where the original
variables x are represented as a convex combination of extreme points and extreme
rays of D:

z∗
MP = min

∑
p∈P

cpλp+
∑
r∈R

crλr

s. t.
∑
p∈P

apλp+
∑
r∈R

arλr ≥ b [πb]∑
p∈P

λp = 1 [π0]

λp ≥ 0 ∀p ∈ P

λr ≥ 0 ∀r ∈ R∑
p∈P

xpλp+
∑
r∈R

xrλr = x∈ Zn
+

(3.16)

In contrast to the Dantzig-Wolfe reformulation for linear programs, during
convexification the last constraint, which reconstructs an original solution using a
solution of the master problem, is crucial during the solving process to ensure the
integrality of the original variables and cannot simply be computed after a solution
has been found. The master problem has the following pricing subproblem:

z∗
SP = min (cᵀ − πᵀ

bA) x− π0

s. t. Dx ≥ d [πd]
x∈ Zn

+

(3.17)

These two changes marked in blue are the key differences between the Dantzig-
Wolfe reformulation of linear programs and integer programs, ensuring that we
find integer solutions for our original problem.

The beauty of this approach lies in the fact that the subproblem only generates
the extreme points and extreme rays of the integer hull of {x ≥ 0 | Dx ≥ d},
regardless of how well the constraints Dx ≥ d approximate this integer hull.
Therefore, we implicitly make use of the integer hull of D without explicitly
defining it.

20

λ solutions to the MP might lead to fractional x solutions. In this case, we
must branch on those fractional original variables [3]. We will discuss this in more
detail in Section 3.5.1.

3.3.2 Discretization
In the discretization approach, we use the adaptation of the Nemhauser-Wolsey
Theorem to integer polyhedra (Theorem 2.3) to reformulate the polyhedron D,
yielding the following master problem:

z∗
MP = min

∑
p∈P̈

cpλp+
∑
r∈R

crλr

s. t.
∑
p∈P̈

apλp+
∑
r∈R

arλr ≥ b [πb]

∑
p∈P̈

λp = 1 [π0]

λp ∈ {0, 1} ∀p ∈ P̈

λr∈ Z+ ∀r ∈ R∑
p∈P̈

xpλp+
∑
r∈R

xrλr = x∈ Zn
+

(3.18)

By design, a solution to the master problem is now guaranteed to be trans-
formable into an integer solution of the original problem. Therefore, the last
constraint can be omitted during the solving process. Solving the linear relaxation
of the RMP might lead to fractional λ variables, which we can then branch on [3].
Keeping in mind that P̈ is a subset of integer points of D, i.e., it might include
interior points, we must find a pricing problem that can generate not only extreme
points (and rays) of D but also interior points. This, however, is not trivial, since
mathematical optimization typically focuses on finding optimal solutions, i.e., the
extreme points. We can postpone this concern for now and use the same pricing
problem as in the convexification approach:

z∗
SP = min (cᵀ − πᵀ

bA) x− π0

s. t. Dx ≥ d [πd]
x∈ Zn

+

(3.19)

As we will discuss in Section 3.5.2, the concern of generating interior points
is addressed during the branching process, allowing us to generate such points on
the fly. Therefore, combined with branching, the discretization approach is also a
viable method to solve integer programs using column generation.

21

3.4 Several and Identical Subproblems

Many applications are composed of different families of variables and constraints,
which can be decomposed into several distinct subproblems. Column generation can
be adapted to this scenario, where we have a set K of subproblems SPk generating
variables xk ∈ X k [3]. Our MP is then defined as:

z∗
MP = min

∑
k∈K

∑
xk∈X k

cxkλxk

s. t.
∑
k∈K

∑
xk∈X k

axkλxk ≥ b [π]

λx ≥ 0 ∀k ∈ K.∀xk ∈ X k

(3.20)

All subproblems SPk now use the same dual values π, and the pricing problem
for each subproblem SPk is defined as:

z∗
SPk = min

xk∈X k
cxk − πᵀaxk (3.21)

The column generation algorithm from Section 3.1.3 proceeds as before, with
the adaptation that it terminates only when all subproblems SPk produce columns
with non-negative reduced costs.

This idea of having several subproblems generating columns for the master
problem can also be applied to Dantzig-Wolfe reformulated LPs and IPs. Recall
that we find two groups of constraints:

A := {x ≥ 0 | Ax ≥ b} 6= ∅
D := {x ≥ 0 |Dx ≥ d} 6= ∅

(3.22)

In many applications, the coefficient matrix D has a block diagonal structure
[3]:

D =


D1

. . .
D|K|

 and d =


d1

...
d|K|

 (3.23)

Each of these k ∈ K blocks can be considered its own subproblem independent
of others. Therefore, another way of writing the MP for Dantzig-Wolfe reformulated
LPs is (analogous for convexification and discretization of IPs):

22

z∗
MP = min

∑
k∈K

∑
p∈P k

ck
pλk

p+
∑
k∈K

∑
r∈Rk

ck
rλk

r

s. t.
∑
k∈K

∑
p∈P k

ak
pλk

p+
∑
k∈K

∑
r∈Rk

ak
rλk

r ≥ b [πb]

∑
p∈P k

λk
p = 1

[
πk

0

]
∀k ∈ K

λk
p ≥ 0 ∀k ∈ K, ∀p ∈ P k

λk
r ≥ 0 ∀k ∈ K, ∀r ∈ Rk∑

p∈P k

xk
pλk

p+
∑

r∈Rk

xk
rλk

r = xk ≥ 0 ∀k ∈ K

(3.24)

Each subproblem SPk is given by:

z∗
SPk = min

(
ckᵀ − πᵀ

bAk
)

xk − πk
0

s. t. Dkxk ≥ dk
[
πk

d

]
xk ≥ 0

(3.25)

Now, consider the case where all blocks are equal, i.e., D1 = . . . = D|K| = D
and d1 = . . . = d|K| = d. In this case, all subproblems SPk are identical, generating
new columns from the same set of extreme points and extreme rays. This implies
that in MP, different λk

p (λk
r) variables for different k correspond to the same

extreme point xp (xr), which is redundant and could slow down the solving process
[3]. In a process called aggregation, we can improve upon this by eliminating this
redundancy:

λp :=
∑
k∈K

λk
p, ∀p ∈ P and λr :=

∑
k∈K

λk
r , ∀r ∈ R (3.26)

Substituting these aggregated variables in MP yields:

23

z∗
MP = min

∑
p∈P

cpλp+
∑

r∈Rk

crλr (3.27a)

s. t.
∑
p∈P

apλp+
∑

r∈Rk

arλr ≥ b [πb] (3.27b)
∑
p∈P

λp = |K| [πagg] (3.27c)

λp ≥ 0 ∀p ∈ P (3.27d)
λr ≥ 0 ∀r ∈ R (3.27e)∑

k∈K

λk
p = λp ∀p ∈ P (3.27f)

∑
k∈K

λk
r = λr ∀r ∈ R (3.27g)

∑
p∈P

λk
p = 1 ∀k ∈ K (3.27h)

λk
p ≥ 0 ∀k ∈ K, ∀p ∈ P (3.27i)

λk
r ≥ 0 ∀k ∈ K, ∀r ∈ R (3.27j)∑

p∈P

xpλk
p+

∑
r∈R

xrλ
k
r = xk ≥ 0 ∀k ∈ K (3.27k)

Columns for this MP are generated by the following subproblem:

z∗
SPagg = min (cᵀ − πᵀ

bA) x− πagg

s. t. Dx ≥ d [πd]
x ≥ 0

(3.28)

The constraints (3.27f) to (3.27j) disaggregate a solution for the aggregated
variables back into the master variables for each subproblem, which are used to
compute a solution to the original formulation using the original variables xk. For
this reason, the constraints from (3.27f) onwards may be omitted during the column
generation algorithm. This statement also holds for Dantzig-Wolfe reformulated
IPs using the convexification approach, where the only difference in MP are the
integrality conditions on xk in constraint (3.27k). In convexification, however,
we can only ensure the integrality of the original solution by branching on the
integer original variables with fractional value. Therefore, we constantly need to
reintroduce the disaggregated master variables to project a solution of RMP to an
original solution.

Discretization, however, offers a powerful alternative. Its MP for identical
subproblems looks as follows:

24

z∗
MP = min

∑
p∈P

cpλp+
∑

r∈Rk

crλr (3.29a)

s. t.
∑
p∈P

apλp+
∑

r∈Rk

arλr ≥ b [πb] (3.29b)
∑
p∈P

λp = |K| [πagg] (3.29c)

λp ∈ Z+ ∀p ∈ P (3.29d)
λr ∈ Z+ ∀r ∈ R (3.29e)∑

k∈K

λk
p = λp ∀p ∈ P (3.29f)

∑
k∈K

λk
r = λr ∀r ∈ R (3.29g)

∑
p∈P

λk
p = 1 ∀k ∈ K (3.29h)

λk
p ∈ Z+ ∀k ∈ K, ∀p ∈ P (3.29i)

λk
r ∈ Z+ ∀k ∈ K, ∀r ∈ R (3.29j)∑

p∈P

xpλk
p+

∑
r∈R

xrλ
k
r = xk ∈ Zn

+ ∀k ∈ K (3.29k)

In Section 3.3.2, we have observed that the integrality constraints on the original
variables xk are already enforced by ensuring the integrality of the disaggregated
master variables λk

p and λk
r . In the case of identical subproblems, we can go a step

further and also neglect the integrality constraints on the disaggregated master
variables, as those are implied by the integrality of the aggregated variables λp and
λr [3]. Therefore, during the entire solving process, we can omit the constraints
(3.29f) to (3.29k) entirely.

On a final note, it is possible to have both identical and differing subproblems
in the same MP . In this case, we introduce classes C of identical subproblems, use
one column generator per class, and aggregate the variables within each class.

3.5 Branch-and-Price
In Section 3.3, we discussed reformulating an integer program into a master and
pricing problem with a focus on integrality conditions. In this section, we explore
solving an integer master program using column generation. Branching is essential
when an optimal solution of the LP relaxation has fractional values for the integer
variables, making the solution infeasible for the IP. To address this, we branch
on these fractional variables, creating subproblems that explicitly exclude these

25

fractional solutions. By recursively solving these subproblems, we eventually find
an optimal integer solution, a process known as branch-and-bound.

In the context of column generation for integer master programs, we follow a
similar approach: first, we relax the integrality constraints of the master problem,
allowing us to solve the relaxation using column generation to optimality. Then,
we check if the integrality conditions are satisfied. If not, we must cut off the
fractional solution by branching, and re-optimize using column generation [3].
This technique of combining branching with column generation is referred to as
branch-and-price.

We have seen two distinct approaches to reformulating an IP into an integer
master and pricing problem: convexification (Section 3.3.1) and discretization
(Section 3.3.2). Since integrality of the original variables is required in both
approaches, we can always branch on fractional solutions of the original variables.
However, discretization introduces additional integrality constraints on the master
variables, which imply the integrality of the original variables. Therefore, in
discretization, we can also branch on the master variables. In the following, we
will discuss both approaches in more detail.

3.5.1 Branching on the Original Variables

Assume we have a fractional solution x∗
RMP to the relaxed restricted master problem

RMP, i.e., there at least one integer variable xj for which x∗
j 6∈ Z. We now must

cut off this fractional solution, for example by creating two subbranches, one where
xj ≤ bx∗

jc and one where xj ≥ dx∗
je (dichotomous branching). In each of these

subtrees, a solution to RMP should be guaranteed to only use columns that satisfy
the branching decision, and during the solving process, the pricing problems should
only be able to generate such columns.

Note 3.2. Branching on the original variables allows the subproblem to generate
the interior points required for the correctness of the discretization approach, as
discussed in Section 3.3.2.

In the branch-and-price context, there are two ways to enforce this branching
decision [3]:

3.5.1.1 Branching in the Master Problem

Recall that the MP includes the following constraint:

∑
p∈P

xpλp +
∑
r∈R

xrλr = x ∈ Zn
+ (3.30)

26

This constraint is now violated in the case of variable xj. We can enforce the
branching decision xj ≤ bx∗

jc by adding the following constraint to MP (analogous
for the up-branch):

∑
p∈P

xpjλp +
∑
r∈R

xrjλr ≤ bx∗
jc [αj] (3.31)

To continue generating only improving columns after branching, we must
consider the dual variable αj in the pricing problem:

z∗
SP = min (cᵀ − πᵀ

bA) x−αjxj − π0

s. t. Dx ≥ d

x ∈ Zn
+

(3.32)

3.5.1.2 Branching in the Pricing Problem

Alternatively, we may add the branching decision directly to the pricing problem:

z∗
SP = min (cᵀ − πᵀ

bA) x− π0

s. t. Dx ≥ d

xj≤ bx∗
jc

x ∈ Zn
+

(3.33)

However, RMP might already contain generated columns that violate the
branching decision. To ensure correctness of this implementation of the branching
decision, we must forbid all existing columns with xj > bx∗

jc from being part of the
solution in the master. This can be achieved by removing such columns altogether
or by adding the following constraint to MP:

∑
p∈P :xpj>bx∗

j c
λp +

∑
r∈R:xrj>bx∗

j c
λr = 0 (3.34)

3.5.2 Branching on the Master Variables

Let Q := P̈ ∪R. Assume our master solution λ∗
RMP is fractional, i.e., λ∗

q 6∈ Z for at
least one q ∈ Q. Unfortunately, dichotomous branching on a such a single master
variable λq is very weak: Assume our problem consists of a single non-aggregated
subproblem, and λ∗

q = 0.5. We then would create the down-branch λq = 0 and the
up-branch λq = 1. The former constraint would cut off almost no solutions, while
the latter would forbid most solutions. This would lead to an extremely unbalanced
branching tree, which is only little better than enumerating all possible solutions

27

[3]. Cutting off multiple fractional solutions in each child node would be more
desirable, i.e., we must branch on constraints, in general of the following form:

∑
p∈P̈

f(p)λp +
∑
r∈R

f(r)λr ≤ h [γ]

Here, the function f determines the coefficient of column p or r in the constraint,
and h is a constant. The subproblem would have to respect the dual value γ of the
constraint in the pricing problem:

z∗
SP = min (cᵀ − πᵀ

bA) x−γf(x)− π0

s. t. Dx ≥ d

x ∈ Zn
+

The question one might ask themselves now is how we can find such a function
f and constant h that are suitable for branching. Henceforth, consider the case
where Q = P̈ , i.e., our problem is bounded (R = ∅). In this case, Vanderbeck
proposes we can find a subset ∅ ⊂ Q′ ⊂ Q of variables in RMP, for which the
following holds [2]:

∑
q∈Q′

λ∗
q =: K 6∈ Z (3.35)

It is obvious that such a subset Q′ always exists, for example choose Q′ = {λq}
for dichotomous branching. In the master problem, we could then branch on this
integrality condition, e.g., in the down branch using:

∑
q∈Q′

λq ≤ bKc [γ] (3.36)

The corresponding subproblem must be adapted to ensure the validity of the
branching decision in the master. In particular, if and only if the pricing problem
generates a new column q′ for which q′ ∈ Q′, the corresponding master variable λq′

must be set to 1. This can be achieved by adding the following constraint to the
pricing problem:

z∗
SP = min (cᵀ − πᵀ

bA) x−γy − π0

s. t. Dx ≥ d

y = 1⇔ x ∈ Q′

x ∈ Zn
+

y∈ {0, 1}

(3.37)

This idea Vanderbeck proposed plays nicely into our more general definition,
where we set f(q) = 1q∈Q′ and, in this down branch, f = bKc.

28

What remains is to find a routine to determine such a subset Q′ in the master
solution, for which the set inclusion rule to be added to SP is also expressible using
a finite set of linear constraints.
Note 3.3. Adding the variable y to the subproblem allows the column genera-
tion algorithm to generate the interior points required for the correctness of the
discretization approach, as discussed in Section 3.3.2 [2].
Note 3.4. Aggregation of subproblems (Section 3.4) is not an issue when branching
in the master. In such cases, we would simply branch on the aggregated variables
within each block of identical subproblems. For readability, we focus only on single
non-aggregated blocks.

3.5.2.1 Vanderbeck’s Generic Branching Scheme

Vanderbeck proposed an elaborate scheme (GENERIC) [1, 2] to find such a subset
Q′ in the master solution, enabling branching on master variables for any type of
bounded IP , i.e., which has no extreme rays (Q = P̈). This branching rule is based
on bounds applied to the components of a column:

B := (xi, η, v) ∈ {xi | 1 ≤ i ≤ n} × {≤,≥} × Z (3.38)

B̄ := (xi, η̄, v) , η̄ :=
≤ if η =≥
≥ if η =≤

(3.39)

where η is the type of bound, and v is the value of the bound. Furthermore, B̄
describes the inverse component bound of B. We can now define a component
bound sequence as:

S := {(xi,1, η1, v1) , . . . , (xj,k, ηk, vk)} ∈ 2{xi|1≤i≤n}×{≤,≥}×Z (3.40)

Let us further introduce the following shorthand notation:

η(a, v)⇔
a ≤ v if η =≤

a ≥ v if η =≥
(3.41)

For a given component bound sequence S and a set of columns Q, we can define
the restriction of Q to S as:

Q(S) := {q ∈ Q | ∀ (xi, η, v) ∈ S.η(xqi, v)} (3.42)

Note that Q(∅) = Q.
We now reduce the problem of finding a subset Q′ to finding a component

bound sequence S for which the following holds:

29

• ∑
q∈Q(S) λ∗

q =: K 6∈ Z

• y = 1⇔ x ∈ Q(S) is expressible using a finite set of linear constraints

Proposition 3.1. If λ∗
RMP is a fractional solution to the master problem, then

there exists a component bound sequence S for which the first condition holds.

Proof. Let Qfraq := {q ∈ Q | λ∗
q 6∈ Z} 6= ∅ be the set of columns with currently

fractional master variables. Then take q∗ := arg minq∈Qfraq
xq as any minimal

undominated column in Qfraq. From q∗, we can now construct a component bound
sequence S, which is only satisfied by q∗ out of all q ∈ Qfraq, as follows:

S := {(xi,≤, bxq∗c) | xi ∈ {xj | qj ∈ Qfraq}} (3.43)

By construction, Q(S) = {q∗}, and thus ∑
q∈Q(S) λ∗

q = λ∗
q∗ 6∈ Z.

Vanderbeck’s scheme divides the solution space along the component bounds
into multiple sub-polyhedra. In this way, each child branch can only generate points
within its own sub-polyhedron, and the master solution will be integral within one
of these sub-polyhedra. In fact, this scheme closely resembles the main idea of
dichotomous branching in branch-and-bound, where the solution space is divided
into two halves. For a given component bound sequence S = {B1, . . . , Bm}, where
each variable xi has at least one upper and one lower component bound, there are
up to 2n − 1 possible sub-polyhedra. To avoid an exponential increases in nodes,
we group some sub-polyhedra together, creating a total of n + 1 nodes. Each of
the 1 ≤ j ≤ m + 1 nodes is now modified as follows: first define the component
bound sequence Sj for the j-th node as:

Sj :=
{B1, . . . , Bj−1, B̄j} if j ≤ m

{B1, . . . , Bm} if j = m + 1
(3.44)

Determine the fractional value Kj for the j-th node as:

Kj :=
∑

q∈Q(Sj)
λ∗

q (3.45)

Then, to RMP of node j, add the following constraint:

∑
q∈Q(Sj)

λq ≥ dKje [γj] (3.46)

Finally, modify the pricing problem as follows:

30

z∗
SP = min (cᵀ − πᵀ

bA) x−γj − π0

s. t. Dx ≥ d

xi≤ v ∀ (xi,≤, v) ∈ Sj

xi≥ v ∀ (xi,≥, v) ∈ Sj

x ∈ Zn
+

(3.47)

Note 3.5. The modifications made to the pricing problems during Vanderbeck’s
generic branching still fit the description stated in Equation (3.37) and can be
written formally as:

z∗
SP = min (cᵀ − πᵀ

bA) x−γjy − π0

s. t. Dx ≥ d

xi≤ v ∀ (xi,≤, v) ∈ Sj

xi≥ v ∀ (xi,≥, v) ∈ Sj

y= 1
x ∈ Zn

+

y∈ {0, 1}

(3.48)

The procedure for finding a component bound sequence S as described in Proof
3.5.2.1 leads to dichotomous branching. As discussed earlier, branching on a single
master variable leads to an unbalanced tree. To overcome this, Vanderbeck proposes
a sophisticated routine that divides the solution space into multiple branches more
evenly [4].

This presentation of Vanderbeck’s generic branching scheme just covers the
main ideas and concepts. For a more in-depth derivation of this rule, detailed
descriptions of the routines, and further improvements such as node pruning, we
refer to [1, 2, 4, 10].

3.6 Branch-Price-and-Cut
From solving IPs, we know that adding cutting planes, or valid inequalities, can
significantly enhance the performance of the branch-and-bound algorithm. These
cutting planes can be generated and added to the LP relaxation at any stage of
the solving process, forming the basis of the branch-and-cut algorithm.

We can extend this concept to branch-and-price. Whenever we have a solution
for the LP relaxation of the MP, we can add additional valid inequalities to the
RMP, aiming to strengthen the relaxation. This extension transforms the branch-
and-price algorithm into a branch-price-and-cut algorithm. In general, separators

31

generating cuts for the MP operate either on the original formulation or within the
master problem of the Dantzig-Wolfe reformulation. We will briefly discuss these
two types of separators. For more detailed information about cutting planes for
column generation and their effectiveness, refer to [3, 11, 12].

3.6.1 Separators using the Original Formulation
Assume we have solved the LP relaxation of the MP to optimality using column
generation to obtain the master solution λ∗, which can be projected back into a
solution x∗ of the original formulation. We can then call any separation algorithms
that operate on the original formulation to generate cuts of the general form:

F ᵀx ≥ f (3.49)
We can apply Dantzig-Wolfe reformulation to transform these cuts, for example

by adding the following constraints to the MP:∑
p∈P

F xpλp +
∑
r∈R

F xrλr ≥ f [α] (3.50)

and imposing the constraints in the pricing problem:

z∗
SP = min (cᵀ − πᵀ

bA−αᵀF) x− π0

s. t. Dx ≥ d

x ∈ Zn
+

(3.51)

This approach allows existing separators originally intended for use in a branch-
and-cut scenario to be reused to generate cutting planes for the Dantzig-Wolfe
reformulation. However, some caveats apply. For example, some separators rely on
a basis solution. Since the Dantzig-Wolfe reformulation might be stronger than the
original formulation [3, 13], an interior point of the polyhedron could be the optimal
solution for the relaxed RMP . In this case, the basis solution is not available, and
such a separator cannot be applied directly.

3.6.2 Separators using the Master Problem
Through discretization, we obtain a MP with integral master variables. To
strengthen the LP relaxation of the MP , we aim to cut off some fractional solutions.
Unfortunately, applying an ordinary branch-and-cut separator to a solution of
the RMP is undesirable: such cuts would only be defined for variables currently
contained in the RMP. Instead, we need cuts over all variables in the MP that
can also be imposed in the subproblem to limit which columns can be generated.
Formally, we seek a function f : Rn → R such that the cut is expressible as:

32

∑
p∈P̈

f(xp)λp +
∑
r∈R

f(xr)λr ≥ h [γ] (3.52)

requiring the following modifications to the pricing problem:

z∗
SP = min (cᵀ − πᵀ

bA) x−γgx − π0

s. t. Dx ≥ d

gx= f(x)
x ∈ Zn

+

gx∈ R

(3.53)

As with branching on master variables (Section 3.5.2), the challenge is expressing
gx = f(x) using a finite set of linear constraints.

3.7 Dual Value Stabilization

To understand the necessity and method of dual value stabilization, we first consider
Lagrangian relaxation. Revisit the following IP, which includes complicating
constraints Ax ≥ b and simpler constraints Dx ≥ d:

z∗
IP = min cᵀx

s. t. Ax ≥ b [πb]
Dx ≥ d [πd]

x ∈ Zn

Recall that during Dantzig-Wolfe reformulation (Section 3.2), we decomposed
this problem by separating the complicating constraints from the simpler ones,
resulting in the following pricing problem:

z∗
SP = −π0+ min (cᵀ − πᵀ

bA) x

s. t. Dx ≥ d [πd]
x ∈ Zn

+

A common approach to compute a lower bound on z∗
IP is to perform a La-

grangian relaxation (LR). In this Lagrangian relaxation, we penalize the violation
(b−Ax) of the complicating constraints using Lagrangian multipliers πb, yield-
ing the following Lagrangian subproblem or Lagrangian function [3]:

33

LR (πb) = min cᵀx + πᵀ
b (b−Ax)

s. t. Dx ≥ d [πd]
x ∈ Zn

+

= πbb + min (c− πᵀ
bA) x

s. t. Dx ≥ d [πd]
x ∈ Zn

+

Notice that both the Lagrangian subproblem and pricing problem are equivalent,
except for a constant offset in their objective functions.

The quality of the lower bound provided by the Lagrangian relaxation depends
on the choice of the Lagrangian multipliers (∀πb > 0. LR (πb) ≤ z∗

IP [3]). To find
the greatest lower bound, i.e., the optimal Lagrangian multipliers π∗

b that maximize
the Lagrangian subproblem, we solve the Lagrangian dual problem (LDP):

z∗
LDP = min

πb≥0
LR (πb)

If z∗
IP is finite, an optimal solution π∗

b to the LDP provides a bound equal to
the optimal objective value of the MP, i.e., z∗

IP = z∗
MP = z∗

LDP. Consequently, the
optimal Lagrangian multipliers π∗

b are dual optimal for the MP, and vice versa;
optimal dual solutions to the MP are optimal for the LDP [3]. The natural question
is whether we can leverage this interplay of primal and dual solutions efficiently.
For this, let us consider a simple approach of solving the LDP by approximation,
the subgradient method.

The Lagrangian function LR is continuous, concave, and subdifferentiable over
its finite domain [3]. These properties suggest a hill-climbing approach for finding
the optimal Lagrangian multipliers π∗

b : start with some initial guess, and iteratively
improve it by moving in the direction of the subgradient of the Lagrangian function.
For a given πb > 0, an optimal solution x∗ to LR (πb) provides a subgradient
g := (b−Ax∗), representing the violation of the complicating constraints for the
Lagrangian function at πb [3]. We then update our current guess of the optimal
Lagrangian multipliers π∗

b by moving in the direction of the subgradient g, i.e.,
π∗

b ← π∗
b + αy, where α is a step size. This process is repeated until convergence.

Since a primal optimal solution of IP also yields a dual optimal solution, any
IP solver can be viewed as a dual solver for LDP . In the context of a Dantzig-Wolfe
reformulation solved by column generation, this becomes particularly interesting, as
the pricing problem is equivalent to the Lagrangian subproblem. Column generation
can be viewed as a more elaborate update scheme for the Lagrangian multipliers,
using multiple solutions to the subproblem to update our guess of the optimal dual
values by solving MP [3]. Hence, we could also use the subgradient method to solve

34

a Dantzig-Wolfe reformulation, solving the MP only to ensure we find a solution
satisfying the complicating constraints.

Both the subgradient method and column generation face a common issue:
the updates of the dual values can overshoot the optimal dual values, leading to
oscillation and slow convergence of the dual values [3, 13, 14]. This is undesirable,
as it takes longer to find a good lower bound on the IP, and similarly as it takes
longer to find important columns for the MP . To mitigate this issue, sophisticated
update schemes have been developed to provide explicit control over updating the
dual values in a column generation setting. This dual value stabilization can
be achieved by smoothing the dual values over the iterations. At iteration t, we
determine the smoothed dual values π̃t by interpolating the current dual values πt

and the previous smoothed dual values π̃t−1:

π̃t := απt + (1− α)π̃t−1

We can improve upon this by moving from a fixed α to an auto-adaptive
α-schedule: decrease α if πt is a good estimate of the optimal dual values, and
increase α if it is not [14, 15]. The quality of our guess πt can be assessed using
the subgradients (b−Axt) available from the pricing problem. The angle the
subgradient forms with πt − π̃t−1 inversely determines the smoothing coefficient α
[14, 15]. This approach requires no parameterization.

Since we are already using the subgradients from the pricing problem, we
can also correct the direction of our update. This hybrid approach combines
the auto-adaptive α-schedule with the subgradient ascent method. It requires
no parameter tuning and only adds a minimal computational effort. This hybrid
method can improve the convergence of the dual values for some instances but does
not necessarily outperform the auto-adaptive α-schedule for reformulations with
identical subproblems. Further details are available in [14, 15].

35

36

Chapter 4

SCIP Optimization Suite

The SCIP Optimization Suite is a comprehensive collection of software tools designed
to address a wide range of mathematical optimization problems. Central to this
suite is the SCIP (Solving Constraint Integer Programs) framework [16, 17], which
serves both as a branch-price-and-cut solver and a development platform manly for
mixed-integer programming (MIP) and constraint integer programming (CIP).

In addition to SCIP itself, the SCIP Optimization Suite includes several other
tools that complement its functionality, such as a LP solver, a modeling language,
and a parallelization layer for exploiting multi-core and distributed computing
resources. For further information, we refer the reader to the official SCIP website1

as well as [18].

4.1 GCG
The Generic Column Generation (GCG) solver developed by Gamrath et al. [11] is a
solver implemented using the SCIP framework, specifically designed to implement
the Dantzig-Wolfe reformulation and solve optimization problems using column
generation and branch-price-and-cut techniques. It works by detecting a suitable
decomposition of the problem, reformulating it as a master problem with a set
of subproblems using a Dantzig-Wolfe reformulation (Section 3.2), and then solv-
ing the master problem using column generation (Section 3.1). To solve MIPs,
GCG utilizes the branch-price-and-cut algorithm (Section 3.5), providing multiple
branching strategies, including Vanderbeck’s generic branching scheme (Section
3.5.2.1). Additionally, GCG supports the stabilization of dual values to improve the
convergence of the column generation process (Section 6.3).

1https://www.scipopt.org/

37

https://www.scipopt.org/

38

Chapter 5

Component Bound Branching

In this chapter, we introduce the component bound branching rule (COMPBND)
for branching on the master variables of the discretized reformulation of any type
of bounded IP. This branching rule, initially formalized by Desrosiers et al. in
[3], builds upon the same fundamental ideas as Vanderbeck’s generic branching
scheme (Section 3.5.2.1), offering a simpler alternative to branching on component
bounds. We will first demonstrate how to enforce component bounds to create a
binary search tree. Then, we will explore the algorithm responsible for determining
suitable branching decisions. Finally, we will compare and contrast Vanderbeck’s
generic branching scheme with this new approach, highlighting their similarities
and differences.

5.1 Overview of the branching scheme
As discussed in Section 3.5.2, given a fractional master solution λ∗

RMP, we can
always find a subset ∅ ⊂ Q′ ⊂ Q := P̈ such that:

∑
q∈Q′

λ∗
q =: K 6∈ Z (5.1)

This allows us to eventually enforce the integrality of λMP, for example, by
adding one of the following branching constraints to each child node:∑

q∈Q′
λq ≤ bKc [γ]

∑
q∈Q′

λq ≥ dKe [γ]
(5.2)

Adding such constraints to the master problem requires us to modify the pricing
problem in the following way:

39

z∗
SP = min (cᵀ − πᵀ

bA) x−γy − π0

s. t. Dx ≥ d

y = 1⇔ x ∈ Q′

x ∈ Zn
+

y∈ {0, 1}

(5.3)

where y becomes the column entry for the row added to the master, and y = 1⇔
x ∈ Q′ is expressible using a finite set of linear constraints.

To find such a Q′ that is expressible in SP , Vanderbeck proposes to use bounds
on the components of the columns. Similarly, in our branching scheme, we also find
such component bounds. Let us reiterate the notation introduced for Vanderbeck’s
branching scheme in Section 3.5.2.1:

B := (xi, η, v) ∈ {xi | 1 ≤ i ≤ n} × {≤,≥} × Z (5.4)

B̄ := (xi, η̄, v) , η̄ :=
≤ if η =≥
≥ if η =≤

(5.5)

We define a component bound sequence as follows:

S := {(xi,1, η1, v1) , . . . , (xj,k, ηk, vk)} ∈ 2{xi|1≤i≤n}×{≤,≥}×Z (5.6)
and restrictions of S to only upper bounds S̄ and lower bounds

¯
S respectively:

S̄ := {(xi,≤, v) | (xi,≤, v) ∈ S}

¯
S := {(xi,≥, v) | (xi,≥, v) ∈ S}

(5.7)

We continue using the following shorthand notation:

η(a, v)⇔
a ≤ v if η =≤

a ≥ v if η =≥
(5.8)

Similar to Vanderbeck’s branching, we can find such a subset Q′ by finding a
component bound sequence S such that:

∑
q∈Q(S)

λ∗
q =: K 6∈ Z (5.9)

where Q(S) := {q ∈ Q | ∀(xi, η, v) ∈ S.η(xqi, v)}.
Proof 3.5.2.1 shows that such an S always exists if the master solution is not

integral. After obtaining such an S, we create two child nodes, the down- and
up-branches, by first adding the branching decision to the master problem:

40

∑
q∈Q(S)

λq ≤ bKc [γ↓ ≤ 0]
∑

q∈Q(S)
λq ≥ dKe [γ↑ ≥ 0] (5.10)

We now must ensure that newly priced columns xq′ are assigned a coefficient
of y = 1 for the branching decision if q′ ∈ Q(S), i.e., if ∀(xi, η, v) ∈ S.η(xq′i, v)
and otherwise y = 0. We achieve this by introducing additional binary variables
ȳs,¯

y
s′ for each Bs ∈ S̄ and for each Bs′ ∈

¯
S respectively, along with the following

constraints, in the SP [3]:

y = 1⇔
∑

Bs∈S̄

ȳs +
∑

Bs∈
¯
S ¯

y
s

= |S|

ȳs = 1⇔ xs ≤ vs ∀Bs ∈ S̄

¯
y

s
= 1⇔ xs ≥ vs ∀Bs ∈ ¯

S

y ∈ {0, 1}
ȳs ∈ {0, 1} ∀Bs ∈ S̄

¯
y

s
∈ {0, 1} ∀Bs ∈ ¯

S

(5.11)

What remains is to express all logical equivalences using a finite set of linear
constraints. For this, the following observations are crucial [3]:

• In the down branch, since −γ↓ ≥ 0, y naturally takes the value 0 and so do
all ȳs and

¯
y

s′ . Thus, in the down branch, we need to force all ȳs and
¯
y

s′ to 1
if the corresponding component bounds are satisfied, and force y to 1 if all
ȳs and

¯
y

s′ equal 1.

• In the up branch, the opposite is the case: since −γ↑ ≤ 0, y and all ȳs,¯
y

s′

naturally take the value 1, requiring us to force all ȳs and
¯
y

s′ to 0 if their
corresponding component bounds are not satisfied, and force y to 0 if any of
the ȳs,¯

y
s′ equals 0.

Given that we require a bounded IP to begin with, let us denote the lower
and upper bounds of a variable xi as lbi and ubi respectively. Using the above
observations, we can now express the logical equivalences mandated by the branching
decision as follows [3]:

y ≥ 1 +
∑

Bs∈S̄

ȳs +
∑

Bs∈
¯
S ¯

y
s
− |S|

ȳs ≥
(vs + 1)− xi

(vs + 1)− lbi

∀Bs ∈ S̄

¯
y

s
≥ xi − (vs − 1)

ubi − (vs − 1) ∀Bs ∈ ¯
S

y ≤ ȳs ∀Bs ∈ S̄

y ≤
¯
y

s
∀Bs ∈ ¯

S

ȳs ≤
ubi − xi

ubi − vs

∀Bs ∈ S̄

¯
y

s
≤ xi − lbi

vs − lbi

∀Bs ∈ ¯
S

(5.12)

41

We have now successfully defined the branching decision in the master problem
and the corresponding constraints in the pricing problem. Until we find an optimal
integral solution of master variables, we will continue to branch using a suitable
component bound sequence S, creating a binary search tree. In the next section,
we present an algorithm responsible for finding such an S given a fractional master
solution λ∗

RMP.

5.2 Separation Procedure
Definition 5.1. The fractionality of λ∗

RMP with respect to S is given by:

FS =
∑

q∈Q(S)

(
λ∗

q − bλ∗
qc

)
≥ 0 (5.13)

When S = ∅, we have Q(S) = Q, and thus FS > 0 since at least one λ∗
q is

fractional. In this case, FS ∈ Z+\{0} due to the convexity constraint ∑
q∈Q λq = 1

in the MP (analogous in aggregated subproblems, see Section 3.4).
In general, for any S one of three cases can occur:
• FS = 0: Q(S) contains no column with fractional λ∗

q. Thus, branching on
S would not cut off the current fractional solution λ∗

RMP. Adding further
component bounds to S would not change this.

• a < FS < a + 1, a ∈ Z+. Using Equation (5.13), we can rewrite this as:∑
q∈Q(S)

bλ∗
qc <

∑
q∈Q(S)

λ∗
q <

∑
q∈Q(S)

bλ∗
qc+ 1 (5.14)

The sum ∑
q∈Q(S) λ∗

q =: K is fractional, enabling us to branch on S (Equation
(5.1)).

• FS ∈ Z+\{0}. In this case, ∑
q∈Q(S) λ∗

q ∈ Z+, and therefore branching on
S would not cut off the current fractional solution. However, using 3.1,
we can find two distinct columns q1, q2 ∈ Q(S), i.e., where xi,q1 < xi,q2

for some i ∈ {1, . . . , n}, such that λ∗
q1 and λ∗

q2 are fractional. Denote the
rounded median of these two column entries as v := bxi,q1 +xi,q2

2 c. Since
xi,q1 ≤ v < v + 1 ≤ xi,q2 , we can separate q1 from q2 by imposing a bound on
the component xi, i.e., expand S to either S1 or S2, where:

S1 := S ∪ {(xi,≤, v)}
S2 := S ∪ {(xi,≥, v + 1)}

(5.15)

Note that FS = FS1 + FS2 , thus we can always at least halve the fractionality
of the current solution. Furthermore, both Q(S1) and Q(S2) are guaranteed
to contain at least one fractional column, ensuring FS1 , FS2 > 0.

42

These observations suggest the following separation procedure: initialize S0 = ∅,
i.e., FS0 > 0. While FSk ∈ Z+\{0}, find a component bound xi to branch on,
yielding S1 and S2. Proceed with either as Sk+1. Finally, FSk will be fractional,
and we can branch on Sk [3].

Proposition 5.1. At no iteration k ≥ 0 will the separation procedure produce a
component bound sequence Sk with FSk = 0.

Proof. As previously discussed, F∅ > 0, i.e., S0 satisfies the proposition.
Assume Sk satisfies the proposition, i.e., FSk > 0. If FSk 6∈ Z+, the procedure

terminates, and the proposition holds. Else FSk 6∈ Z+\{0}. In this case, let us
assume FSk+1 = 0. Then Q(Sk+1) contains no fractional columns, which contradicts
the design of Sk+1. By contradiction, FSk+1 > 0 must hold, and by induction, the
proposition holds.

Proposition 5.2. Given that λ∗
RMP contains finitely many non-zero values, the

separation procedure will terminate after a finite number of iterations.

Proof. Let us denote the restriction of Q(S) to the columns q with fractional
λ∗

q as Qf(S). By our assumption |Qf (S)| < ∞. At each iteration k, we only
remove columns from Qf(Sk), i.e.,

∣∣∣Qf (Sk+1)
∣∣∣ <

∣∣∣Qf (Sk)
∣∣∣. Since |Qf (S0)| < ∞,

the separation procedure must terminate after a finite number of iterations.

5.2.1 Choice of Component Bounds
The separation procedure described above is not complete, as we have not yet
defined which bounds we impose on which components. This choice can significantly
impact the performance of the subsequent solving of the child nodes. In the worst
case, the separation procedure will yield a component bound sequence S for which
Q(S) only contains one column, i.e., dichotomous branching. Maintaining balance
within the tree is generally beneficial, but the time required to find an optimal S
can grow arbitrarily large and must be traded off against improved performance
that comes with a balanced tree. We propose the following two-staged approach:

In the first stage, using one or multiple heuristics, we recursively determine a set
of valid component bound sequences S1, . . . , Sm for the current fractional master
solution λ∗

RMP. For this, we adapt the previously described separation procedure
to explore both options S1 and S2 whenever FS is integral. A first-stage heuristic is
now only responsible for finding a separating component xi and bound value v ∈ Z.
Both the lower bound xi ≤ v and the upper bound xi ≥ v + 1 will be explored
further; we do not have to choose between them at this stage. In particular, we
propose two heuristics for this first stage:

43

• MaxRangeMidrange Heuristic: At each iteration k, we choose the component
xi for which the components xi,q of the columns q ∈ Qf (Sk) are most spread
out. We then bound xi by the midrange of these components. Formally, we
define:

maxj := arg max
q∈Qf (Sk)

xj,q ∀j ∈ {1, . . . , n}

minj := arg min
q∈Qf (Sk)

xj,q ∀j ∈ {1, . . . , n}

xi = arg max
j∈{1,...,n}

maxj −minj

v := maxi −mini

2
• MostDistinctMedian Heuristic: At each iteration k, we choose the compo-

nent xi for which the components xi,q of the columns q ∈ Qf(Sk) have the
most distinct values. We then choose v to be the median of these components.

In the second stage, another heuristic now scores every component bound se-
quence, and we continue branching using the highest scoring Sj . Specifically, we pro-
pose to choose the smallest component bound sequence, i.e., Sj = arg minS1,...,Sm|Sj|.
This minimizes the modifications we make to the pricing problem. In case there
are multiple such minimal component bound sequences, we propose to use one of
two further heuristics to select one component bound sequence out of all those
with minimal cardinality:

• ClosedToZHalf Heuristic: For each Sj, we calculate Kj := ∑
q∈Q(Sj) λ∗

q. We
then select the one where Kj is closest to Z

2 . Here, Z denotes the number of
aggregated subproblems in the current block (Section 3.4 and Section 5.2.3).
The intuition behind this is once again to maintain balance within the tree:
if Kj was far off from Z

2 , i.e., either close to 0 or close to Z, branching on
Sj would be similar to dichotomous branching, since it would either forbid
almost all or almost no solutions (Section 3.5.2).

• MostFractional Heuristic: Here, we also calculate Kj for each Sj. We then
select the one where Kj is most fractional, i.e., where Kj − bKjc is closest
to 0.5. This heuristic is motivated by the idea that such a most fractional
selection of master variables can be interpreted as the RMP being most
uncertain about.

5.2.2 Post-processing of Component Bound Sequences
Depending on the heuristics chosen, there is no guarantee that the separation
procedure will find a component bound sequence S in which each component

44

xi has at most one upper bound (lower bound analogous). While this is not a
problem from a mathematical standpoint, only the least upper bound (greatest
lower bound, respectively) is relevant, and so adding variables and constraints
for the other upper bounds (lower bounds) is unnecessary and could potentially
slow down the solving process of SP . Therefore, post-processing of the component
bound sequences, i.e., removing redundant bounds, is advisable. For example, if
we had S = {(x1,≤, 3), (x1,≤, 4)}, the first bound already implies the second, and
we can remove the second bound from S, yielding {(x1,≤, 3)}.

5.2.3 Branching with Multiple Subproblems
The component bound branching rule described above can be applied to instances
with a single subproblem, as well as instances with multiple identical subproblems
aggregated into a single subproblem (Section 3.4). However, there are instances
consisting of at least two distinct subproblems, also known as blocks, where the
master problem yields a solution λk∗

RMP for each block k. Since each component xi

belongs to a specific block, not all columns q1, q2 in RMP will have an entry for xi,
thus the separation scheme is not directly applicable across multiple blocks.

Given that more than one block has fractional master solutions, we propose to
pick one of those blocks to branch on and then apply the separation procedure as
described above within the selected block.

5.3 Comparison to Vanderbeck’s Generic Branch-
ing

Both the generic branching scheme by Vanderbeck (Section 3.5.2.1) and the pro-
posed component bound scheme involve imposing bounds on the components of the
columns within the SP to branch in the master problem. However, the methods
for enforcing these component bounds differ significantly.

Vanderbeck’s GENERIC branching scheme treats these bounds as hard constraints,
effectively subdividing the solution space in the subproblem. As a result, when
the optimal solution x∗ to the IP is found in a node of the RMP , it adheres to all
component bounds imposed by the branching decisions from the root to that node.
In contrast, our component bound branching rule introduces these bounds as soft
constraints, allowing the generation of columns that both satisfy and violate the
component bounds.

While the component bound branching rule might be simpler to implement,
Vanderbeck’s GENERIC branching offers a notable advantage: it only requires
tightening the bounds of the components in the SP, without introducing new

45

variables and constraints. This simplicity maintains the structure of the pricing
problem, enabling many dynamic programming solvers for specific IPs to efficiently
generate columns despite changing variable bounds. Conversely, our approach alters
the pricing problem with each branching decision, potentially necessitating the use
of a generic MIP solver. Moreover, the GENERIC scheme incrementally tightens
the bounds as the search tree deepens, making the pricing problem progressively
easier to solve. In contrast, COMPBND branching adds more variables and constraints,
complicating the SP as the branching process continues.

46

Chapter 6

Master Constraints without
corresponding Original Problem
Constraints

6.1 Conceptual Framework and Definition

Beyond implementing the component bound branching rule (Chapter 5), key
objective of this thesis is to enable future GCG (Section 4.1) developers to easily
create new branching rules and separators operating within the reformulation inside
the framework. Currently, GCG faces limitations in this regard: branching rules
must either produce decisions formulated in the original problem, which can then
be Dantzig-Wolfe reformulated and added to the master and pricing problems (as
seen when branching on original variables in Section 3.5.1), or they must produce
constraints for the master problem without requiring modifications to the pricing
problem, as seen with Ryan-Foster branching. Other branching rules, such as
Vanderbeck’s generic branching scheme (Section 3.5.2.1), cannot be implemented
without significant changes to the GCG framework. These changes would involve,
for example, applying and removing component bounds in the pricing problem
when a node in the search tree is entered or left. Our proposed component bound
branching rule (Chapter 5) and any separators using the master problem (Section
3.6.2) would also require such changes. The reason is that GCG does not currently
support imposing constraints in the master problem that necessitate modifications
to at least one SP, where the master constraints and induced pricing problem
modifications cannot necessarily be described as a product of a Dantzig-Wolfe
reformulation, i.e., do not necessarily have a counterpart in the original formulation.

In this chapter, we will specify the notation of such constraints, referred to as
generic mastercuts. We will present our integration of these constraints into the

47

GCG framework as part of a new interface and demonstrate how to apply dual value
stabilization to these constraints.

First, let us define the concept of a generic mastercut, which unites Vanderbeck’s
generic branching scheme, our component bound branching rule, and any master
separators.

Definition 6.1. A generic mastercut is a constraint in the master problem
that does not have a counterpart in the original problem, and therefore requires
modification to one or multiple SP to ensure its validity in the master. Specifically,
it takes the following form, where the implicit function f maps columns p and r to
their respective coefficients in the master constraint:∑

p∈P

f(p)λp +
∑
r∈R

f(r)λr ≤ h [γ]

The subproblems are now responsible for correctly determining the coefficients
f(p) and f(r) of all newly generated columns p and r. Therefore, one generic
mastercut is associated with a set of pricing modifications, one for each subproblem
that the constraint in the master affects.

Definition 6.2. A pricing modification to the subproblem SPk in block k,
associated with a generic mastercut with dual value γ, is a set of constraints and
variables added to the subproblem to ensure the validity of the generic mastercut in
the master problem with respect to new variables.

Every pricing modification includes at least one mandatory variable y ∈ Y of
some domain Y (e.g. Y = Z+) with an objective coefficient of −γ in the SPk. The
solution value of y is used as the column entry for the master constraint of the
generic mastercut, i.e., f(p) or f(r). For this reason, this variable is known as
the coefficient variable of the pricing modification, and we modify the pricing
problem as follows:

z∗
SP = min (cᵀ − πᵀ

bA) x−γy − π0

s. t. Dx ≥ d

y= f(x)
x ∈ Zn

+

y∈ Y

Expressing y = f(x) may require auxiliary variables and constraints. Due to
their auxiliary role, these variables have an objective coefficient of zero and do not
correspond to a row in the master problem.

This generic mastercut construct can be used by both the branching rules
GENERIC (Section 3.5.2.1) and the COMPBND (Chapter 5): in both, we choose f to

48

be an indicator function that equals one if and only if the column in question fully
satisfies a given component bound sequence S. Thus, y would be a binary decision
variable (Y = {0, 1}).

In Vanderbeck’s generic branching scheme, the pricing problems are only per-
mitted to generate columns in the region defined by S. We enforce this, by creating
auxiliary constraints xiηini for each (x∗,i, ηi, ni) ∈ S, and forcing y = 1(= f(x)) (or
Y = {1}), though y could be omitted altogether through presolving. In contrast,
COMPBND additionally allows columns violating S to be generated, thus we create
auxiliary variables and constraints to determine whether all bounds in S were
satisfied, as discussed in Section 5.1.

The benefit of this construct is its generality, and thus its versatility. It does not
presume anything about the origin of a generic mastercut. For this reason, it is not
only applicable to branching rules, but, for example, also to separators. In Section
3.6.2, we have briefly discussed the possibility of separating a fractional master
solution by finding cutting planes solely based on the Dantzig-Wolfe reformulation.
Cuts found by such a master separator would exactly fit the definition of a generic
mastercut.

In the following, we will see that a technical issue affecting the validity of the
constraints arises when generic mastercuts are created locally in non-root nodes.
We will briefly present how the current implementation of Vanderbeck’s generic
branching scheme in GCG deals with this issue, and then introduce our solution that
is correct, more efficient, and more broadly applicable. Finally, we will discuss how
we can continue using dual value stabilization in GCG with generic mastercuts.

6.2 Mastervariable Synchronization across the
entire Search Tree

A

C

GF

B

ED

Figure 6.1: An exemplary search tree created by the component bound branching
rule, where the lexicographic order of the nodes resembles the order in which they
were created.

49

As we have mentioned multiple times, all columns in the RMP must have the
correct coefficient set in the master constraint. Just one column with an incorrect
coefficient can lead to invalid mastercuts. For example, if a column q satisfies a
component bound sequence S, it should have a coefficient of 1 in the mastercut.
Any other coefficient would lead to an incomplete branching scheme. This very
same reason is why the pricing modifications of a generic mastercut are essential in
the first place.

So, we must ensure that all columns in the RMP have the correct coefficients
set. This can be easily achieved when creating the generic mastercut, as well as
when a new column is generated in the subtree of the node where the generic
mastercut was created. In the former case, we may simply compute the coefficients
of all variables in the RMP upfront. And in the later case, the solution value of
the coefficient variable in the SP already determines the correct coefficient in the
master. However, consider the following scenario in a search tree, for example a
tree generated with the component bound branching rule using generic mastercuts,
as depicted in Figure 6.1: we are currently processing node F in the search tree
and generate a new column q′. After deactivating node F and activating node
D, it is possible that xq′ satisfies the component bounds imposed in D. Thus, q′

should have a coefficient of 1 in the mastercut of D. However, since the column
was generated in F, the information that q′ was created was not communicated
to D. And therefore, the coefficient of q′ in the mastercut of D is not set correctly.
This problem also occurs for cuts produced by master separators.

To prevent this, all generic mastercuts must be made aware of these columns
to update their coefficients accordingly. Specifically, we want to synchronize newly
generated master variables across the entire search tree lazily, i.e., only when a
node is activated and thus the update is required. Moreover, since GCG can remove
columns it deems unnecessary from the MP, the synchronization must consider
the case where a newly generated column is deleted before it is fully synchronized
across the search tree.

In this section, we will first analyze the current approach taken by the imple-
mentation of Vanderbeck’s generic branching in GCG. Then, we will present a more
efficient approach, which we refer to as history tracking, and further improve it.

6.2.1 Current Approach used by the Implementation of
Vanderbeck’s Generic Branching

In the current implementation of Vanderbeck’s generic branching in GCG, each node
created by this branching rule stores the number of master variables it is aware
of. This number is updated whenever a node is deactivated to reflect any newly
generated columns. Upon node activation, the current number of variables in the

50

master is compared against how many variables were present the last time the node
was active. If new columns have been added to the RMP in the meantime, this
counter might increase. If so, the coefficient for the new columns will be determined
and set in the RMP . More specifically, since the number of variables in the master
can grow quite large, it avoids updating the coefficients of all columns in the RMP .
Instead, it assumes the master variables indexed from the last known number of
variables to the current number of variables are new and sets their coefficients
accordingly.

Unfortunately, for any generic mastercut in general, this approach is not suffi-
cient, as not all new columns are necessarily detected. For instance, if one column
was generated and another column was deleted in the meantime, the counter would
not increase, as the number of columns in the master would remain the same.
Consequently, the coefficient for the new column would not be set in the mastercut,
potentially leading to invalid mastercuts.

Additionally, this approach is not developer-friendly. Developers of branching
rules and master separators should not have to manage when and where columns
are generated and deleted. This is a task that should be handled by GCG, abstracting
away the origins of the columns.

6.2.2 History Tracking Approach

q0 1 q1 1 q2 3 q3 2 q4 1 q5 2

C A B other Latest

Figure 6.2: Reference-counted linked list of the history of columns added to the
RMP , with external references drawn dashed from below, e.g., those from the search
tree nodes A, B, and C. Each element holds a reference to the master variable
belonging to column qi, as well as the number of references to itself.

We propose an efficient approach to lazily notify all nodes in the search tree upon
node activation of new columns generated while also considering deleted columns.
We introduce a reference-counted linked list of variables added to the RMP , where
the order of the variables in the list is determined by their generation order. Each
node in the search tree holds its own external reference to this construct. The
specific element in the list that a search tree node points to indicates the last
column in the RMP when the node was last active. All subsequent variables, i.e.,
the elements next in the list, are new columns generated elsewhere in the tree.

51

Additionally, we hold one external reference to the tail of the list, representing
the last generated column. This construct is illustrated in Figure 6.2. Since the
linked list tracks which variables were created when we will refer to this list as the
varhistory.

Let us consider a search tree with root node A and child nodes B and C.
Currently, we are solving node B, and therefore nodes A and B are active. While
solving B, we have already generated columns q3, q4, and q5. Assume we have
solved the relaxation of B to optimality, finding a fractional solution, and have
created two child nodes D and E. Both nodes will be created using all columns
currently in the RMP , i.e., qi, i ∈ {0, 5}. For this reason, we use the Latest pointer
to initialize the reference to the varhistory of D and E (Figure 6.3).

q0 1 q1 1 q2 3 q3 2 q4 1 q5 4

C A B other D E Latest

Figure 6.3: varhistory after creating child nodes D and E of node B.

Continuing this scenario, let GCG deem the column q2 unnecessary and remove
it from the RMP . Since there may be external references to this variable, which in
this case there are, we do not remove the element in the list holding q2. Instead,
we mark it as deleted. Next, we would like to solve node C. For this, we must
deactivate node B, and activate node C. Whenever we deactivate a node, we know
that it and all its ancestors are already aware of all columns in the RMP . Therefore,
we may jump all the active node’s pointers to the Latest pointer. This is illustrated
in Figure 6.4.

q0 1 q1 1 q2 1 q3 2 q4 1 q5 6

C other A B D E Latest

Figure 6.4: varhistory after deletion of column q2 and deactivation of node B.

Finally, we can activate node C. Upon node activation, we realize that the
element that C points to in the varhistory has a next element. This means that
there are new columns that have been generated since the last time C was active.
We forward the pointer of C one by one until we reach the Latest pointer. Each
time we forward the pointer, if the variable qi has not been marked as deleted, we
calculate the coefficient of qi in the generic mastercut of C.

52

Whenever we forward a pointer, either step-by-step or by jumping to the Latest
pointer, the internal reference count of the elements in the list is updated. As soon
as this reference count reaches zero, the element will be safely freed. This ensures
that only necessary variables, i.e., those that still need to be synchronized across
the entire search tree, are kept in memory. This is illustrated in Figure 6.5.

q3 1 q4 1 q5 7

other A B C D E Latest

Figure 6.5: varhistory after activation of node C.

Assume node C generates a new column q6. We add this column to the
varhistory by allocating a new list element, setting its reference count to 1,
setting the next pointer of the current Latest element to the new element, and
finally forwarding the Latest pointer to the new element. This is illustrated in
Figure 6.6.

q3 1 q4 1 q5 6 q6 2

other A B C D E Latest

Figure 6.6: varhistory after generating column q6 in node C.

This approach is correct in the sense that all active generic mastercuts are
guaranteed to be aware of all columns in the RMP. This correctness is given,
since the deletion of variables can not cause us to miss any new variables. Since
close to no management is required, its performance impact is negligible: we must
only update reference counts, forward pointers, and append and free list elements.
Furthermore, we hold the memory footprint to a minimum, as the varhistory
construct will only hold variables that still need to be synchronized. But once all
external references have seen some variable qi, i.e., its reference count reaches zero,
we can automatically free the memory of the element in the list holding qi.

And as a final note, this approach is not limited for synchronization of master
variables for generic mastercuts used as branching decisions, but can also be used for
other purposes, which have symbolized by the other reference in the above figures.
Such other purposes, for example would be keeping cutting planes generated by
master separators up-to-date (Section 3.6.2).

53

6.2.3 History Tracking using Unrolled Linked Lists Ap-
proach

While already efficient, the previous approach has an opportunity for improvement:
the elements of the varhistory might be allocated in completely different memory
locations, leading to poor cache utilization during traversal. Storing the entire list
in a contiguous memory block could improve cache locality but could be costly if
reallocation and copying are needed when space runs out.

We can improve cache utilization by unrolling the linked list into blocks storing
a fixed number of columns, with each block having its own reference count. These
blocks are linked together, forming a list of blocks. The references to the varhistory
point to the blocks and hold an offset within the block. This way, each reference
still refers to some unique column qi, retaining the ability to forward a pointer
one column at a time. A new variable is added to the tail block if its capacity
isn’t maxed out; otherwise, a new block is allocated. This concept is illustrated in
Figure 6.7.

q0 q3 q2 q3 4 q4 q5 2

C,0 A,2 B,2 other,3 Latest,1

Figure 6.7: varhistory of Figure 6.2 unrolled into blocks of size 4.

This approach improves cache locality and reduces the total number of mem-
ory allocation and deallocation operations. From an outside perspective, the
fundamental operations of the varhistory construct remain the same.

6.3 Dual Value Stabilization for Generic Master-
cuts

As discussed in Section 3.7, the hybrid ascent dual value stabilization method
implemented in GCG requires subgradients of the Lagrangian function to update
the dual values. These subgradients are precisely the violations of the complicating
constraints in the pricing problem, represented by (b−Ax∗) for a given pricing
solution x∗. Here, Ax∗ represents the column coefficients for the constraints in
the master problem.

To stabilize the dual value γ of a generic mastercut (Definition 6.1), we use the
same principle. The violation of a generic mastercut is given by (f − y∗). Utilizing

54

this violation as a subgradient aligns with the idea of refining our estimate of the
optimal dual values by moving in the direction indicated by this violation. Thus,
by determining the violation (f − y∗), we can apply the existing hybrid ascent dual
value stabilization method to generic mastercuts effectively.

55

56

Chapter 7

Implementation

7.1 Generic Mastercuts
In this thesis, we have extended the architecture of GCG to manage generic mas-
tercuts (Chapter 6) that developers of branching rules or master separators might
want to add to the solver. We have created an interface for interacting with such
mastercuts. Specifically, we define a generic mastercut as a wrapper around a
constraint in the master, as well as variables and constraints to be added to a
specific pricing problem:

Listing 7.1: Generic Mastercut Data Structure
1 struct GCG_PRICINGMODIFICATION {
2 int blocknr ;
3 SCIP_VAR * coefvar ;
4 SCIP_VAR ** additionalvars ;
5 int nadditionalvars ;
6 SCIP_CONS ** additionalconss ;
7 int nadditionalconss ;
8 };
9

10 enum GCG_MASTERCUTTYPE {
11 GCG_MASTERCUTTYPE_CONS ,
12 GCG_MASTERCUTTYPE_ROW
13 };
14
15 union GCG_MASTERCUTCUT {
16 SCIP_CONS * cons;
17 SCIP_ROW * row;
18 };

57

19
20 #define GCG_DECL_MASTERCUTGETCOEFF (x) SCIP_RETCODE x

(SCIP* scip , GCG_MASTERCUTDATA * mastercutdata ,
SCIP_VAR ** solvars , SCIP_Real * solvals , int
nsolvars , int probnr , SCIP_Real * coef)

21
22 struct GCG_MASTERCUTDATA {
23 GCG_MASTERCUTTYPE type;
24 GCG_MASTERCUTCUT cut;
25 GCG_PRICINGMODIFICATION * pricingmodifications ;
26 int npricingmodifications ;
27 void* data;
28 GCG_DECL_MASTERCUTGETCOEFF ((* mastercutGetCoeff));
29 };

This setup closely aligns with our definition of a generic mastercut, in that one
master constraint is associated with at least one pricing modification. Each pricing
modification adds variables and constraints to the subproblem SPk associated with
block k. Two more considerations were made here:

First, we allow the mastercut to be either a constraint or a row in the master.
In SCIP, separators create cutting planes as rows that can be dynamically added
and removed from the problem. Constraints, on the other hand, are typically
considered part of the formulation at a specific node. Since our goal is for master
separators to use this interface, we permit both types of cuts in the master.

Second, deep within GCG’s pricing loop, the row coefficients for the master
variables are often recalculated. In such a situation, we could, of course, calculate
the mastercut coefficient of a master variable by solving the pricing problem while
fixing all original pricing variables x to find the solution value of the coefficient
variable y. However, this would impose a significant computational overhead.
Instead, for each generic mastercut, we pass along a callback function that calculates
the coefficient of a master variable in the mastercut given the pricing solution
x∗. As this function might require external data, we allow the user to store a
pointer to such data in the data field. For example, in the COMPBND branching
rule (Chapter 5), the function stored in mastercutGetCoeff would return 1.0 if
the column satisfies the component bound sequence S pointed to by data, and 0.0
otherwise.

To the outside, we expose methods for creating and freeing a generic mastercut.
Within GCG we have adapted the stabilization to handle generic mastercuts according
to Section 6.3. Notably, we have modified the pricing loop to apply and remove
the pricing modifications of each generic mastercut before and after the pricing
problem is solved.

58

The only remaining part is to make GCG aware that such generic mastercuts
have been added to the problem. It would be incorrect to apply the modifications of
all generated mastercuts to the pricing problem. For instance, a generic mastercut
used as a branching constraint in the left subtree is not necessarily valid in the right
subtree. Even if a generic mastercut is valid, it might not be active in the model
if SCIP believes the cutting plane to be unnecessary. Thus, we require a method
to determine the set of currently active generic mastercuts. To facilitate such
mastercuts used for branching, we have extended the existing branching interface
of GCG by a callback that simply returns the generic mastercut of the current node,
if any. By traversing the tree from the root to the current node, we can collect all
active generic mastercuts.

7.2 Mastervariable Synchronization
As discussed in Section 6.2, there is a need to synchronize the information of newly
generated columns across the entire search tree. This requirement arose in the
context of branching using generic mastercuts, but it is generally necessary for
any branching rule that does not formulate its decisions in the original problem.
Therefore, we have decoupled the synchronization of master variables from the
generic mastercut interface and implemented it as a separate internal module within
GCG.

Listing 7.2: Variable History Construct
1 struct GCG_VARHISTORYBUFFER {
2 SCIP_VAR * vars [50];
3 int nvars;
4 GCG_VARHISTORYBUFFER * next;
5 int nuses;
6 };
7
8 struct GCG_VARHISTORY {
9 GCG_VARHISTORYBUFFER * buffer;

10 int pos;
11 };

To enable such mastervariable synchronization, we have implemented the history
tracking approach using unrolled linked lists as described in Section 6.2.3. Each
element, or buffer, in the unrolled linked list has a default capacity of 50 variables.
The variable nuses, which acts as a reference count, keeps track of how many
strong pointers of type GCG_VARHISTORY are currently pointing to the buffer. The
GCG_VARHISTORY structure is a simple wrapper around the buffer, keeping track of

59

the current position in the buffer. Consequently, each strong pointer still points to
a specific variable. The GCG pricer is responsible for managing the global variable
history list and appending new variables whenever a new column is generated. In
Section 6.2, we have denoted this central reference as the Latest pointer.

We can now synchronize master variables by attaching a strong reference to
each node in the search tree. Specifically, upon node creation, we create a reference
identical to the Latest pointer stored in the GCG pricer. Then, following the
procedure described in Section 6.2.2, we forward these strong pointers upon node
(de-)activation. To inform a branching rule in a specific node about the creation
of a new variable, we have extended the GCG branching rule interface with the
following callback function. The branching rule can then, for example, determine
the constraint coefficient for this new master variable.

Listing 7.3: Branching Rule Interface Extension
1 #define GCG_DECL_BRANCHNEWCOL (x) SCIP_RETCODE x (SCIP*

scip , GCG_BRANCHDATA * branchdata , SCIP_VAR *
mastervar)

Finally, we note that each SCIP_VAR already contains a flag indicating whether
it has been deleted from the problem. We use this flag instead of marking such
variables as deleted in the history buffer ourselves.

7.3 Component Bound Branching
We have implemented the component bound branching rule as detailed in Chapter
5 within GCG. This rule necessitates the addition of constraints and variables to the
subproblem to enforce its branching decisions, which we have facilitated using the
new generic mastercut interface.

The integration of the component bound branching rule into the GCG framework
was straightforward due to the generic mastercut interface. This interface allows
us to efficiently manage the necessary modifications to the subproblem, ensuring
that the branching decisions are correctly enforced.

The component bound branching rule is now fully integrated into the GCG
framework, and can be used seamlessly alongside other branching rules.

60

Chapter 8

Evaluation

8.1 Test Set of Instances
To evaluate the component bound branching rule and compare it to Vanderbeck’s
generic branching scheme, we assembled a test set of mixed integer instances. We
focused on instances where GCG itself chooses the generic branching scheme or the
component bound branching rule, ensuring our evaluation is not skewed by forcing
such branching on instances.

To create this test set, we filtered the strIPlib collection [19] for instances
previously solved using the generic branching scheme, resulting in an initial set
of 1053 mixed integer instances. However, the metadata for these instances was
generated with an older version of GCG, which may not reflect the current solver’s
behavior. Consequently, we post-processed these instances, removing those no
longer solved using the generic branching scheme. This refinement yielded a final
test set of 736 mixed integer instances, primarily comprising cutting stock and
scheduling problems in various sizes and formulations.

8.2 Comparison of the different Separation Heuris-
tics

We compared different separation heuristics with and without full-tree dual value
stabilization by running the test set on 12 configurations of the component bound
branching rule. These configurations varied the first- and second-stage sepa-
ration heuristics (Section 5.2) and the stabilization method. The naming con-
ventions for these runs are as follows: runs using both the MaxRangeMidrange
and MostDistinctMedian first-stage heuristics are named compbnd. Runs us-
ing only MaxRangeMidrange are named compbnd-mrm, and those using only the

61

(a) MostFractional: solve status (b) ClosestToZHalf: solve status

(c) MostFractional: nodes (d) ClosestToZHalf: nodes

(e) MostFractional: times (f) ClosestToZHalf: times

Figure 8.1: Comparison of all run configurations. In the boxplots the dots represent
the arithmetic mean of the data. Outliers are not visualized. Note the differing
scales in Figures 8.1e and 8.1f.

62

(a) MostFractional: pricing calls (b) ClosestToZHalf: pricing calls

(c) MostFractional: priced variables (d) ClosestToZHalf: priced variables

Figure 8.2: Comparison of all run configurations (extended). In the boxplots the
dots represent the arithmetic mean of the data. Outliers are not visualized.

MostDistinctMedian heuristic are named compbnd-mdm. If full-tree dual value
stabilization was applied, +dvs is appended to the name. For example, compbnd-
mdm+dvs uses the MostDistinctMedian heuristic with full-tree dual value stabi-
lization.

We also proposed two options for the second-stage heuristic: ClosestToZHalf
and MostFractional. For readability, we grouped all runs by their second-stage
heuristic and presented their statistics in separate figures.

For reference, we included Vanderbeck’s generic branching scheme results,
denoted as generic. This allows us to compare the component bound branching
rule’s performance against generic branching scheme. As discussed in Section
5.3, we expect the generic branching scheme to outperform the component bound
branching rule, partially due to the latter having to fall back to a general MIP
solver, while the former may retain the ability to use special-case solving algorithms
after branching. To measure the impact of having to resort to a MIP solver, we

63

Figure 8.3: Percentage of instances solved faster by the configurations of the
component bound branching rule compared to generic.

also included a configuration of Vanderbeck’s scheme in which we force the use of
a MIP solver at all non-root nodes, denoted as generic-mip.

Analyzing the results in Figure 8.1, several key observations emerge. First,
full-tree dual value stabilization generally degrades the performance of the com-
ponent bound branching rule. Second, runs using the MostFractional heuristic
significantly outperform those using the ClosestToZHalf heuristic.

That the MostFractional heuristic outperforms the ClosestToZHalf heuristic
may be explained by the former producing a smaller search tree, which in turn
leads to fewer pricing calls and priced variables, as shown in Figure 8.2. As for the
impact of dual value stabilization, we observe the opposite effect: although the
search tree is smaller, pricing is called less often, and fewer variables are priced, the
overall performance with respect to solving status and time is worse. This suggests
that the management cost of dual value stabilization in non-root nodes outweighs
the potential performance gains.

Among the best-performing configurations, i.e., those using the MostFractional
second-stage heuristic, the number of instances solved and the solving times
significantly improve when using both first-stage heuristics instead of just one.
This pattern suggests that neither first-stage heuristic universally finds the optimal
component bound sequences, highlighting the importance of the second-stage
heuristic in selecting the best branching decisions.

64

8.3 Comparison to Vanderbeck’s Generic Branch-
ing

As discussed in Section 5.3, the main difference between Vanderbeck’s generic
scheme and the component bound branching rule is in their modifications to the
pricing problem. The GENERIC rule retains the pricing structure, allowing the
use of specialized algorithms (e.g., knapsack solvers) at all nodes. In contrast,
the COMPBND rule adds variables and constraints to the pricing problem, often
necessitating a fallback to a general MIP solver, which may degrade performance.
Additionally, as the search tree deepens, the COMPBND rule further complicates the
pricing problem by adding more variables and constraints, whereas the GENERIC
rule’s pricing problems become easier to solve due to tighter bounds. Thus, we
expected the GENERIC rule to outperform the COMPBND rule, particularly for larger
instances.

This expectation is confirmed by our results (Figure 8.1). Vanderbeck’s generic
branching scheme solves more instances and does so in significantly less time
compared to any configuration of the component bound branching rule.

Figure 8.3 shows how often the component bound branching rule outperforms
Vanderbeck’s generic branching scheme. The MostFractional second-stage heuris-
tic consistently outperforms the ClosestToZHalf heuristic. Notably, the highest
outperformance rate is achieved when only using the MostDistinctMedian first-
stage heuristic. Combining it with the MaxRangeMidrange heuristic actually de-
creases the outperformance rate, suggesting that MostDistinctMedian is the most
effective first-stage heuristic, while MaxRangeMidrange may not be as beneficial.

The surprisingly large outperformance rates we see for the MostFractional
second-stage heuristic should be taken with a grain of salt. When we take a closer
look at those instances, we observe that most of them are solved within 40 seconds
by either branching rule, and often only a few seconds were saved. Therefore, the
impact of this outperformance is limited. Especially given that the generic scheme
is generally faster and solves more instances, it remains the preferred choice for
most instances.

Things change quite a bit for Vanderbeck’s generic branching when we enforce
the use of a MIP solver for the pricing problem in non-root nodes. Although this
generic-mip configuration produces fewer nodes, possibly due to more suitable
columns being generated, having to rely on a MIP solver imposes a great per-
formance penalty, see Figure 8.1. It seems as if creating a smaller search tree is
far more beneficial than having to solve more complex pricing problems. Even
the configurations of the weaker ClosestToZHalf second-stage heuristic seemingly
perform on par with the generic branching scheme when it is forced to use a
MIP solver for pricing. The MostFractional second-stage heuristic configurations

65

Figure 8.4: Percentage of instances solved faster by the configurations of the
component bound branching rule compared to generic-mip.

clearly outperform the generic branching scheme in this scenario, as shown in
Figure 8.4.

These findings suggest that the component bound branching rule can be a viable
alternative to Vanderbeck’s branching scheme when no specialized algorithms are
available for the pricing problem. However, the generic branching scheme remains
the preferred choice when such algorithms are available.

8.4 In-Depth Analysis of the First-Stage Separa-
tion Heuristics and the Effect of Dual Value
stabilization

We now examine the first-stage separation heuristics in more detail, focusing on
the selected component bound sequences for branching. Since the MostFractional
second-stage heuristic significantly outperforms the ClosestToZHalf heuristic, we
limit our analysis to configurations using the former. For each configuration and
all instances, we logged the size of the component bound sequences at each node.

Although the compbnd configuration always selects the minimal component
bound sequence from the two first-stage heuristics, this does not mean it branches
with fewer component bounds on average compared to the compbnd-mrm or compbnd-
mdm configurations. Current branching decisions influence future opportunities,
and mixing both first-stage heuristics can lead to more component bounds per

66

(a) Distribution of the number of bounds
created while branching

(b) Average number of bounds created while
branching

Figure 8.5: Left: distribution of the number of bounds created at each node for
the different configurations. Note the logarithmic scale. Right: average number of
bounds created overall for the different configuration.

branching decision.
Figure 8.5a shows the distribution of the number of component bounds created

for each branching decision. The data indicates that it is rare to branch with a
component bound sequence larger than 4. Most cases involve sequences of size 1
or 2, as seen in Figure 8.5b. Additionally, both first-stage heuristics individually
create more bounds on average than their combination, likely explaining why the
compbnd configuration outperforms the others (Section 8.2).

Figure 8.6 illustrates the number of branching decisions per depth and the
average number of component bounds per branching decision across different depths.
Given that the COMPBND rule creates a binary search tree and each instance is solved
with only a few hundred nodes (Figure 8.1c), most branching decisions occur at
depths in the low hundreds. Consequently, we plotted the average number of
component bounds per branching decision up to depth 500.

Our first observation is that full-tree dual value stabilization has little effect
on the average number of component bounds per branching decision. Since each
configuration produces a similar number of nodes with and without stabilization
(Figure 8.1c), we further estimate that both search trees are similar. Therefore,
as roughly the same amount of nodes are solved with similar complexities of the
pricing problems, the performance degradation discussed in Section 8.2 suggests
that the management cost of dual value stabilization in non-root nodes outweighs
the potential performance gains. This is in line with our initial thoughts on the
impact of dual value stabilization.

For all configurations, the average number of component bounds per branching
decision rises steeply until around depth 100, then stabilizes and gradually falls,

67

(a) compbnd(+dvs): Number of branching
decisions per depth

(b) compbnd(+dvs): Average number of
bounds per depth (95% CI)

(c) compbnd-mdm(+dvs): Number of branch-
ing decisions per depth

(d) compbnd-mdm(+dvs): Average number
of bounds per depth (95% CI)

(e) compbnd-mrm(+dvs): Number of branch-
ing decisions per depth

(f) compbnd-mrm(+dvs): Average number of
bounds per depth (95% CI)

Figure 8.6: Left: number of branching decisions per depth. Right: average number
of component bounds per depth, with 95% confidence interval (smoothed).

68

though variation increases. This behavior can be explained as follows: in the
initial levels, there are many fractional columns, but few branching decisions have
been imposed, making it easy to split the columns into two groups. As branching
continues, the number of fractional columns remains high, but many constraints
have already been imposed, making it harder to find separating component bound
sequences, requiring more component bounds. Eventually, the number of fractional
columns decreases, making it easier to find separating component bounds again.
The point at which this tipping occurs likely depends on the instance.

We also observe differences between using only the MostDistinctMedian, the
MaxRangeMidrange, or both first-stage separation heuristics. The combination
of the two peaks at the least value out of the three configurations, while the
MaxRangeMidrange configuration peaks the highest. However, it is also the fastest
to drop back to an average of just over one, while the MostDistinctMedian
configuration hovers at its peak for over 200 depths before decreasing.

The narrow confidence interval until depth 100, despite significant changes in
the mean, is surprising. The sudden drop in the average number of component
bounds at very shallow depths, followed by a steep rise, remains unexplained.

69

70

Chapter 9

Conclusion

In this thesis, we have formalized and explored constraints that exist solely within
the reformulated problem in column generation, where their validity in the master
problem is ensured only by specific modifications to the pricing problem. To
address these needs, we have extended the GCG solver by introducing an interface
that facilitates the creation and management of these specialized constraints,
termed generic mastercuts. This new interface is designed to streamline the
implementation of advanced branching rules and separators that rely on conditions
specific to the reformulated problem.

Leveraging this interface, we have implemented the component bound branching
rule, as presented by Desrosiers et al. [3]. This rule offers a simpler alternative
to Vanderbeck’s generic branching scheme [4] for branching on component bound
sequences. Our evaluation reveals that, while Vanderbeck’s scheme significantly
outperforms the new component bound branching rule, this advantage is largely
due to the preservation of the pricing problem’s structure. This preservation allows
the continued use of specialized optimization algorithms throughout the entire
search tree. When Vanderbeck’s scheme is forced to rely on a generic MIP solver for
pricing, as is required by the component bound branching rule, the latter actually
performs better on average. This finding underscores the critical importance of
maintaining the structure of the pricing problem to enhance the performance of
the branch-and-price algorithm, thereby emphasizing the need for careful selection
of the decomposition strategy.

Although the component bound branching rule does not substantially improve
the overall performance of GCG, its implementation highlights the versatility and
potential of the new generic mastercut interface. This interface makes it feasible to
implement complex branching rules or separators that operate exclusively within
the reformulated problem. As a further refinement, expanding the interface to
accommodate constraints that do not require additional variables in the pricing
problem, such as those in Vanderbeck’s generic branching, would broaden its

71

applicability and utility.
Looking ahead, future research could focus on developing new branching rules

and master separators that can fully exploit the capabilities of this interface. This
work will likely open up new avenues for improving the efficiency and effectiveness of
branch-price-and-cut based algorithms in a wider range of applications. Moreover,
given the importance of choosing the right component bound sequence for branching,
as evidenced by our evaluation, further work could explore more effective heuristics
for identifying these sequences. Investigating whether a theoretically optimal
component bound sequence exists or developing more sophisticated heuristics could
significantly enhance the performance of the component bound branching rule and,
by extension, the efficiency of branch-and-price algorithms in solving large-scale
integer programs.

72

Bibliography

[1] François Vanderbeck and Laurence A Wolsey. Reformulation and decomposi-
tion of integer programs. Springer, 2010.

[2] François Vanderbeck and Laurence A Wolsey. “An exact algorithm for IP
column generation”. In: Operations research letters 19.4 (1996), pp. 151–159.

[3] Jacques Desrosiers et al. Branch-and-Price. Les Cahiers du GERAD G-
2024-36. GERAD, Montréal QC H3T 2A7, Canada: Groupe détudes et de
recherche en analyse des décisions, June 2024, pp. 1–689. eprint: https:
/ / www . gerad . ca / papers / G - 2024 - 36 . pdf ? locale = fr. url: https :
//www.gerad.ca/fr/papers/G-2024-36. published.

[4] François Vanderbeck. “Branching in branch-and-price: a generic scheme”. In:
Mathematical Programming 130 (2011), pp. 249–294.

[5] Nathan Chappell. “Minkowski-Weyl Theorem”. In: (2019).
[6] Laurence A Wolsey and George L Nemhauser. Integer and combinatorial

optimization. John Wiley & Sons, 2014.
[7] George B Dantzig and Mukund N Thapa. The simplex method. Springer,

1997.
[8] Nikolaos Ploskas and Nikolaos Samaras. “Pivoting rules for the revised

simplex algorithm”. In: Yugoslav Journal of Operations Research 24.3 (2014),
pp. 321–332.

[9] Jií Matouek and Bernd Gärtner. Understanding and using linear programming.
Vol. 1. Springer, 2007.

[10] Marcel Schmickerath. “Experiments on Vanderbeck’s generic Branch-and-
Price scheme”. In: (2012).

[11] Gerald Gamrath. “Generic branch-cut-and-price”. MA thesis. 2010.
[12] Jonas T Witt. “Separation of Generic Cutting Planes in Branch-and-Price”.

PhD thesis. Master’s thesis. RWTH Aachen University, 2013.

73

https://www.gerad.ca/papers/G-2024-36.pdf?locale=fr
https://www.gerad.ca/papers/G-2024-36.pdf?locale=fr
https://www.gerad.ca/fr/papers/G-2024-36
https://www.gerad.ca/fr/papers/G-2024-36

[13] Michael Bastubbe, Marco E Lübbecke, and Jonas T Witt. “A Computational
Investigation on the Strength of Dantzig-Wolfe Reformulations”. In: 17th
International Symposium on Experimental Algorithms (SEA 2018). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik. 2018.

[14] Artur Pessoa et al. “In-out separation and column generation stabilization
by dual price smoothing”. In: Experimental Algorithms: 12th International
Symposium, SEA 2013, Rome, Italy, June 5-7, 2013. Proceedings 12. Springer.
2013, pp. 354–365.

[15] Artur Pessoa et al. “Automation and combination of linear-programming
based stabilization techniques in column generation”. In: INFORMS Journal
on Computing 30.2 (2018), pp. 339–360.

[16] Tobias Achterberg. “Constraint integer programming”. In: (2007).
[17] Tobias Achterberg. “SCIP: solving constraint integer programs”. In: Mathe-

matical Programming Computation 1 (2009), pp. 1–41.
[18] Suresh Bolusani et al. “The SCIP Optimization Suite 9.0”. In: arXiv preprint

arXiv:2402.17702 (2024).
[19] Michael Bastubbe et al. “strIPlib: Structured Integer Programming Library”.

2025. url: https://striplib.or.rwth-aachen.de.

74

https://striplib.or.rwth-aachen.de

	Introduction
	Preliminaries
	Polyhedron Representation
	Primal Simplex Algorithm

	Column Generation and Branch-and-Price
	Column Generation
	Farkas Pricing FP-SP
	Reduced Cost Pricing RCP-SP
	Column Generation Algorithm

	Dantzig-Wolfe Reformulation
	Dantzig-Wolfe Reformulation for Integer Programs
	Convexification
	Discretization

	Several and Identical Subproblems
	Branch-and-Price
	Branching on the Original Variables
	Branching on the Master Variables

	Branch-Price-and-Cut
	Separators using the Original Formulation
	Separators using the Master Problem

	Dual Value Stabilization

	SCIP Optimization Suite
	GCG

	Component Bound Branching
	Overview of the branching scheme
	Separation Procedure
	Choice of Component Bounds
	Post-processing of Component Bound Sequences
	Branching with Multiple Subproblems

	Comparison to Vanderbeck's Generic Branching

	Master Constraints without corresponding Original Problem Constraints
	Conceptual Framework and Definition
	Mastervariable Synchronization across the entire Search Tree
	Current Approach used by the Implementation of Vanderbeck's Generic Branching
	History Tracking Approach
	History Tracking using Unrolled Linked Lists Approach

	Dual Value Stabilization for Generic Mastercuts

	Implementation
	Generic Mastercuts
	Mastervariable Synchronization
	Component Bound Branching

	Evaluation
	Test Set of Instances
	Comparison of the different Separation Heuristics
	Comparison to Vanderbeck's Generic Branching
	In-Depth Analysis of the First-Stage Separation Heuristics and the Effect of Dual Value stabilization

	Conclusion

